DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core-shell nanocatalysts

Abstract

Iridium dioxide, IrO2, is second to the most active RuO2 catalyst for the oxygen evolution reaction (OER) in acid, and is used in proton exchange membrane water electrolyzers due to its high durability. To improve the activity of IrO2-based catalysts, we prepared RuO2@IrO2 core-shell nanocatalysts using carbon-supported Ru as the template. At 1.48 V, the OER specific activity of RuO2@IrO2 is threefold that of IrO2. While the activity volcano plots over wide range materials have been reported, zooming into the top region to clarify the rate limiting steps of currently most active catalysts is important for further developing advanced OER catalysts. Here, we verified theory-proposed sequential water dissociation pathway in which the O-O bond forms on a single metal site, not via coupling of two adsorbed intermediates, by fitting measured polarization curves using a kinetic equation with the free energies of adsorption and activation as the parameters. Consistent with theoretical calculations, we show that the OER activities of IrO2 and RuO2@IrO2 are limited by the formation of O adsorbed phase, while the OOH formation on the adsorbed O limits the reaction rate on RuO2.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1];  [2];  [1];  [1];  [1];  [1];  [1];  [3];  [3];  [1]; ORCiD logo [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Division
  2. Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Division
  3. Proton OnSite, Wallingford, CT (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); National Natural Science Foundation of China (NNSF); Major Basic Research Program of China; National Natural Science Foundation of China (NSFC); USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
OSTI Identifier:
1425009
Alternate Identifier(s):
OSTI ID: 1460967; OSTI ID: 1549442
Report Number(s):
BNL-114508-2017-JAAM
Journal ID: ISSN 1572-6657
Grant/Contract Number:  
SC0012704; FG02-12ER86531; AC02-06CH11357; 21336003; 2014CB239703
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Electroanalytical Chemistry
Additional Journal Information:
Journal Volume: 819; Journal Issue: C; Journal ID: ISSN 1572-6657
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; Electrolysis; RuO2; IrO2; Core-shell; Oxygen evolution reaction mechanism

Citation Formats

Ma, Zhong, Zhang, Yu, Liu, Shizhong, Xu, Wenqian, Wu, Lijun, Hsieh, Yu-Chi, Liu, Ping, Zhu, Yimei, Sasaki, Kotaro, Renner, Julie N., Ayers, Katherine E., Adzic, Radoslav R., and Wang, Jia X. Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core-shell nanocatalysts. United States: N. p., 2017. Web. doi:10.1016/j.jelechem.2017.10.062.
Ma, Zhong, Zhang, Yu, Liu, Shizhong, Xu, Wenqian, Wu, Lijun, Hsieh, Yu-Chi, Liu, Ping, Zhu, Yimei, Sasaki, Kotaro, Renner, Julie N., Ayers, Katherine E., Adzic, Radoslav R., & Wang, Jia X. Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core-shell nanocatalysts. United States. https://doi.org/10.1016/j.jelechem.2017.10.062
Ma, Zhong, Zhang, Yu, Liu, Shizhong, Xu, Wenqian, Wu, Lijun, Hsieh, Yu-Chi, Liu, Ping, Zhu, Yimei, Sasaki, Kotaro, Renner, Julie N., Ayers, Katherine E., Adzic, Radoslav R., and Wang, Jia X. Sat . "Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core-shell nanocatalysts". United States. https://doi.org/10.1016/j.jelechem.2017.10.062. https://www.osti.gov/servlets/purl/1425009.
@article{osti_1425009,
title = {Reaction mechanism for oxygen evolution on RuO2, IrO2, and RuO2@IrO2 core-shell nanocatalysts},
author = {Ma, Zhong and Zhang, Yu and Liu, Shizhong and Xu, Wenqian and Wu, Lijun and Hsieh, Yu-Chi and Liu, Ping and Zhu, Yimei and Sasaki, Kotaro and Renner, Julie N. and Ayers, Katherine E. and Adzic, Radoslav R. and Wang, Jia X.},
abstractNote = {Iridium dioxide, IrO2, is second to the most active RuO2 catalyst for the oxygen evolution reaction (OER) in acid, and is used in proton exchange membrane water electrolyzers due to its high durability. To improve the activity of IrO2-based catalysts, we prepared RuO2@IrO2 core-shell nanocatalysts using carbon-supported Ru as the template. At 1.48 V, the OER specific activity of RuO2@IrO2 is threefold that of IrO2. While the activity volcano plots over wide range materials have been reported, zooming into the top region to clarify the rate limiting steps of currently most active catalysts is important for further developing advanced OER catalysts. Here, we verified theory-proposed sequential water dissociation pathway in which the O-O bond forms on a single metal site, not via coupling of two adsorbed intermediates, by fitting measured polarization curves using a kinetic equation with the free energies of adsorption and activation as the parameters. Consistent with theoretical calculations, we show that the OER activities of IrO2 and RuO2@IrO2 are limited by the formation of O adsorbed phase, while the OOH formation on the adsorbed O limits the reaction rate on RuO2.},
doi = {10.1016/j.jelechem.2017.10.062},
journal = {Journal of Electroanalytical Chemistry},
number = C,
volume = 819,
place = {United States},
year = {Sat Oct 28 00:00:00 EDT 2017},
month = {Sat Oct 28 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 89 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes
journal, October 2010

  • Sasaki, Kotaro; Naohara, Hideo; Cai, Yun
  • Angewandte Chemie International Edition, Vol. 49, Issue 46, p. 8602-8607
  • DOI: 10.1002/anie.201004287

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy
journal, January 2012

  • Vesborg, Peter C. K.; Jaramillo, Thomas F.
  • RSC Advances, Vol. 2, Issue 21
  • DOI: 10.1039/c2ra20839c

Oxygen reduction and evolution at single-metal active sites: Comparison between functionalized graphitic materials and protoporphyrins
journal, January 2013


Synthesis and Optimisation of IrO2 Electrocatalysts by Adams Fusion Method for Solid Polymer Electrolyte Electrolysers
journal, August 2012


Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction
journal, January 2014

  • Fabbri, E.; Habereder, A.; Waltar, K.
  • Catal. Sci. Technol., Vol. 4, Issue 11
  • DOI: 10.1039/C4CY00669K

Mechanism of oxygen reactions at porous oxide electrodes. Part 2—Oxygen evolution at RuO2, IrO2 and IrxRu1−xO2 electrodes in aqueous acid and alkaline solution
journal, January 2011

  • Lyons, Michael E. G.; Floquet, Stephane
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 12
  • DOI: 10.1039/c0cp02875d

Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates
journal, March 2005

  • Zhang, Junliang; Vukmirovic, Miomir B.; Xu, Ye
  • Angewandte Chemie International Edition, Vol. 44, Issue 14, p. 2132-2135
  • DOI: 10.1002/anie.200462335

Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis
journal, September 2011


Avoid the quasi-equilibrium assumption when evaluating the electrocatalytic oxygen evolution reaction mechanism by Tafel slope analysis
journal, December 2015


Orientation-Dependent Oxygen Evolution Activities of Rutile IrO 2 and RuO 2
journal, April 2014

  • Stoerzinger, Kelsey A.; Qiao, Liang; Biegalski, Michael D.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 10
  • DOI: 10.1021/jz500610u

Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile
journal, October 2014


Initial Performance and Durability of Ultra-Low Loaded NSTF Electrodes for PEM Electrolyzers
journal, January 2012

  • Debe, M. K.; Hendricks, S. M.; Vernstrom, G. D.
  • Journal of The Electrochemical Society, Vol. 159, Issue 6
  • DOI: 10.1149/2.065206jes

The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis
journal, June 2010


Characterisation of surfaces modified by sol-gel derived RuxIr1−xO2 coatings for oxygen evolution in acid medium
journal, December 1998

  • Mattos-Costa, F. I.; de Lima-Neto, P.; Machado, S. A. S.
  • Electrochimica Acta, Vol. 44, Issue 8-9, p. 1515-1523
  • DOI: 10.1016/S0013-4686(98)00275-8

Modeling the electro-oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn
journal, November 2003


Mechanism and Tafel Lines of Electro-Oxidation of Water to Oxygen on RuO 2 (110)
journal, December 2010

  • Fang, Ya-Hui; Liu, Zhi-Pan
  • Journal of the American Chemical Society, Vol. 132, Issue 51
  • DOI: 10.1021/ja1069272

Ordered bilayer ruthenium–platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts
journal, September 2013

  • Hsieh, Yu-Chi; Zhang, Yu; Su, Dong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3466

Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst
journal, June 2010


Electrolysis of water on (oxidized) metal surfaces
journal, December 2005


Atomic-Scale Analysis of the RuO 2 /Water Interface under Electrochemical Conditions
journal, April 2016

  • Watanabe, Eriko; Rossmeisl, Jan; Björketun, Mårten E.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 15
  • DOI: 10.1021/acs.jpcc.5b12448

Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts
journal, April 2010

  • Strasser, Peter; Koh, Shirlaine; Anniyev, Toyli
  • Nature Chemistry, Vol. 2, Issue 6
  • DOI: 10.1038/nchem.623

IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting
journal, January 2014

  • Nong, Hong Nhan; Gan, Lin; Willinger, Elena
  • Chem. Sci., Vol. 5, Issue 8
  • DOI: 10.1039/C4SC01065E

Synthesis and Activities of Rutile IrO 2 and RuO 2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions
journal, January 2012

  • Lee, Youngmin; Suntivich, Jin; May, Kevin J.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 3
  • DOI: 10.1021/jz2016507

Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers
journal, October 2008


Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
journal, March 2011

  • Man, Isabela C.; Su, Hai‐Yan; Calle‐Vallejo, Federico
  • ChemCatChem, Vol. 3, Issue 7
  • DOI: 10.1002/cctc.201000397

Size and Shape Effects of Pd@Pt Core–Shell Nanoparticles: Unique Role of Surface Contraction and Local Structural Flexibility
journal, July 2013

  • An, Wei; Liu, Ping
  • The Journal of Physical Chemistry C, Vol. 117, Issue 31
  • DOI: 10.1021/jp4057785

Pathways to ultra-low platinum group metal catalyst loading in proton exchange membrane electrolyzers
journal, March 2016


Electrolysis of water on oxide surfaces
journal, September 2007


First-principles simulation: ideas, illustrations and the CASTEP code
journal, March 2002

  • Segall, M. D.; Lindan, Philip J. D.; Probert, M. J.
  • Journal of Physics: Condensed Matter, Vol. 14, Issue 11
  • DOI: 10.1088/0953-8984/14/11/301

Oxygen evolution reaction on IrO2-based DSA® type electrodes: kinetics analysis of Tafel lines and EIS
journal, July 2004


Oxygen Reduction on Well-Defined Core−Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects
journal, December 2009

  • Wang, Jia X.; Inada, Hiromi; Wu, Lijun
  • Journal of the American Chemical Society, Vol. 131, Issue 47
  • DOI: 10.1021/ja9067645

Automated Discovery and Construction of Surface Phase Diagrams Using Machine Learning
journal, September 2016

  • Ulissi, Zachary W.; Singh, Aayush R.; Tsai, Charlie
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 19
  • DOI: 10.1021/acs.jpclett.6b01254

Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media
journal, October 1986


Hydrogen diffusion effects on the kinetics of the hydrogen electrode reaction. Part I. Theoretical aspects
journal, January 2004

  • Gennero de Chialvo, Mar�a R.; Chialvo, Abel C.
  • Physical Chemistry Chemical Physics, Vol. 6, Issue 15
  • DOI: 10.1039/b402695k

Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen
journal, April 1956

  • Bockris, J. O'M.
  • The Journal of Chemical Physics, Vol. 24, Issue 4
  • DOI: 10.1063/1.1742616

Performance of a PEM water electrolysis cell using IrxRuyTazO2IrxRuyTazO2 electrocatalysts for the oxygen evolution electrode
journal, September 2007


Hydrogen Oxidation Reaction on Pt in Acidic Media:  Adsorption Isotherm and Activation Free Energies
journal, August 2007

  • Wang, Jia. X.; Springer, Thomas E.; Liu, Ping
  • The Journal of Physical Chemistry C, Vol. 111, Issue 33
  • DOI: 10.1021/jp073400i

Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers
journal, March 2015


Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals
journal, June 2004

  • Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.
  • The Journal of Chemical Physics, Vol. 120, Issue 21
  • DOI: 10.1063/1.1737365

Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis
journal, January 2015

  • Gawande, Manoj B.; Goswami, Anandarup; Asefa, Tewodros
  • Chemical Society Reviews, Vol. 44, Issue 21
  • DOI: 10.1039/C5CS00343A

The Effect of Heat Treatment on the Preparation of Pt-RuO2/C Electrocatalysts
journal, June 2010

  • Purgato, Fabiana L. S.; Montoro, Luciano A.; Ribeiro, Josimar
  • Electrocatalysis, Vol. 1, Issue 2-3
  • DOI: 10.1007/s12678-010-0019-9

Surface properties of RuO2 + IrO2 mixed oxide electrodes
journal, December 1986

  • Angelinetta, C.; Trasatti, S.; Atanososka, Lj. D.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 214, Issue 1-2
  • DOI: 10.1016/0022-0728(86)80122-X

Using Surface Segregation To Design Stable Ru-Ir Oxides for the Oxygen Evolution Reaction in Acidic Environments
journal, October 2014

  • Danilovic, Nemanja; Subbaraman, Ramachandran; Chang, Kee Chul
  • Angewandte Chemie, Vol. 126, Issue 51, p. 14240-14245
  • DOI: 10.1002/ange.201406455

Electrocatalytic properties of transition metal oxides for oxygen evolution reaction
journal, May 1986


Structural Studies of Rutile-Type Metal Dioxides
journal, June 1997

  • Bolzan, A. A.; Fong, C.; Kennedy, B. J.
  • Acta Crystallographica Section B Structural Science, Vol. 53, Issue 3
  • DOI: 10.1107/S0108768197001468

A comprehensive review on PEM water electrolysis
journal, April 2013

  • Carmo, Marcelo; Fritz, David L.; Mergel, Jürgen
  • International Journal of Hydrogen Energy, Vol. 38, Issue 12, p. 4901-4934
  • DOI: 10.1016/j.ijhydene.2013.01.151

Double-Trap Kinetic Equation for the Oxygen Reduction Reaction on Pt(111) in Acidic Media
journal, December 2007

  • Wang, Jia X.; Zhang, Junliang; Adzic, Radoslav R.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 49, p. 12702-12710
  • DOI: 10.1021/jp076104e

Works referencing / citing this record:

Improved oxygen evolution activity of IrO 2 by in situ engineering of an ultra-small Ir sphere shell utilizing a pulsed laser
journal, January 2019

  • Zhong, Wenwu; Lin, Zhiping; Feng, Shangshen
  • Nanoscale, Vol. 11, Issue 10
  • DOI: 10.1039/c8nr10163a

Iridium‐Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting
journal, April 2019


Hierarchical Urchin-like Spinel Cu x Co 3-x O 4 Particles as Oxygen Evolution Reaction Catalysts in Alkaline Medium
journal, October 2019


Controlling the 3-D morphology of Ni–Fe-based nanocatalysts for the oxygen evolution reaction
journal, January 2019

  • Manso, Ryan H.; Acharya, Prashant; Deng, Shiqing
  • Nanoscale, Vol. 11, Issue 17
  • DOI: 10.1039/c8nr10138h

Minimization of Catalyst Loading on Regenerative Fuel Cell Positive Electrodes Based on Titanium Felts using Atomic Layer Deposition
journal, October 2018

  • Schlicht, Stefanie; Barr, Maïssa K. S.; Wu, Mingjian
  • ChemElectroChem, Vol. 5, Issue 24
  • DOI: 10.1002/celc.201801220

Structure–Activity/Stability Correlations from the Electrochemical Dynamic Responses of Titanium Anode Coatings Formed of Ordered TiO 2 @RuO 2 Microspheres
journal, January 2018

  • Košević, Milica; Vukićević, Nataša; Stopić, Srećko
  • Journal of The Electrochemical Society, Vol. 165, Issue 15
  • DOI: 10.1149/2.0521815jes

Shell thickness controlled core–shell Fe 3 O 4 @CoO nanocrystals as efficient bifunctional catalysts for the oxygen reduction and evolution reactions
journal, January 2019

  • Zhou, Lingshan; Deng, Binglu; Jiang, Zhongqing
  • Chemical Communications, Vol. 55, Issue 4
  • DOI: 10.1039/c8cc09140d

Ru@RuO 2 Core‐Shell Nanorods: A Highly Active and Stable Bifunctional Catalyst for Oxygen Evolution and Hydrogen Evolution Reactions
journal, April 2019

  • Jiang, Rongzhong; Tran, Dat T.; Li, Jiangtian
  • ENERGY & ENVIRONMENTAL MATERIALS, Vol. 2, Issue 3
  • DOI: 10.1002/eem2.12031

Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting
journal, January 2019

  • Hu, Congling; Zhang, Lei; Gong, Jinlong
  • Energy & Environmental Science, Vol. 12, Issue 9
  • DOI: 10.1039/c9ee01202h

Ex-Situ Electrochemical Characterization of IrO2 Synthesized by a Modified Adams Fusion Method for the Oxygen Evolution Reaction
journal, April 2019

  • Felix, Cecil; Bladergroen, Bernard; Linkov, Vladimir
  • Catalysts, Vol. 9, Issue 4
  • DOI: 10.3390/catal9040318

An Ultrasonication-Assisted Cobalt Hydroxide Composite with Enhanced Electrocatalytic Activity toward Oxygen Evolution Reaction
journal, October 2018

  • Si, Yujun; Guo, Chaozhong; Xie, Chenglong
  • Materials, Vol. 11, Issue 10
  • DOI: 10.3390/ma11101912