skip to main content

DOE PAGESDOE PAGES

Title: Hidden simplicity of the gravity action

We derive new representations of the Einstein-Hilbert action in which graviton perturbation theory is immensely simplified. To accomplish this, we recast the Einstein-Hilbert action as a theory of purely cubic interactions among gravitons and a single auxiliary field. The corresponding equations of motion are the Einstein field equations rewritten as two coupled first-order differential equations. Since all Feynman diagrams are cubic, we are able to derive new off-shell recursion relations for tree-level graviton scattering amplitudes. With a judicious choice of gauge fixing, we then construct an especially compact form for the Einstein-Hilbert action in which all graviton interactions are simply proportional to the graviton kinetic term. Our results apply to graviton perturbations about an arbitrary curved background spacetime.
Authors:
 [1] ;  [1]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States). Walter Burke Inst. for Theoretical Physics
Publication Date:
Grant/Contract Number:
SC0010255; DGE-1144469
Type:
Accepted Manuscript
Journal Name:
Journal of High Energy Physics (Online)
Additional Journal Information:
Journal Name: Journal of High Energy Physics (Online); Journal Volume: 2017; Journal Issue: 9; Journal ID: ISSN 1029-8479
Publisher:
Springer Berlin
Research Org:
California Inst. of Technology (CalTech), Pasadena, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25); National Science Foundation (NSF)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; classical theories of gravity; scattering amplitudes; effective field theories
OSTI Identifier:
1424591

Cheung, Clifford, and Remmen, Grant N. Hidden simplicity of the gravity action. United States: N. p., Web. doi:10.1007/JHEP09(2017)002.
Cheung, Clifford, & Remmen, Grant N. Hidden simplicity of the gravity action. United States. doi:10.1007/JHEP09(2017)002.
Cheung, Clifford, and Remmen, Grant N. 2017. "Hidden simplicity of the gravity action". United States. doi:10.1007/JHEP09(2017)002. https://www.osti.gov/servlets/purl/1424591.
@article{osti_1424591,
title = {Hidden simplicity of the gravity action},
author = {Cheung, Clifford and Remmen, Grant N.},
abstractNote = {We derive new representations of the Einstein-Hilbert action in which graviton perturbation theory is immensely simplified. To accomplish this, we recast the Einstein-Hilbert action as a theory of purely cubic interactions among gravitons and a single auxiliary field. The corresponding equations of motion are the Einstein field equations rewritten as two coupled first-order differential equations. Since all Feynman diagrams are cubic, we are able to derive new off-shell recursion relations for tree-level graviton scattering amplitudes. With a judicious choice of gauge fixing, we then construct an especially compact form for the Einstein-Hilbert action in which all graviton interactions are simply proportional to the graviton kinetic term. Our results apply to graviton perturbations about an arbitrary curved background spacetime.},
doi = {10.1007/JHEP09(2017)002},
journal = {Journal of High Energy Physics (Online)},
number = 9,
volume = 2017,
place = {United States},
year = {2017},
month = {9}
}