What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?
Abstract
Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this paper, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency than those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Finally, Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.
- Authors:
-
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
- Publication Date:
- Research Org.:
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
- Sponsoring Org.:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Science (SC); USDOE Office of Energy Efficiency and Renewable Energy (EERE)
- OSTI Identifier:
- 1424453
- Alternate Identifier(s):
- OSTI ID: 1548643
- Grant/Contract Number:
- AC05-00OR22725
- Resource Type:
- Accepted Manuscript
- Journal Name:
- Journal of Power Sources
- Additional Journal Information:
- Journal Volume: 384; Journal ID: ISSN 0378-7753
- Publisher:
- Elsevier
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 25 ENERGY STORAGE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Li ion battery; Si graphite anode; polyacrylic acid; lithium substituted polyacrylic acid; full cells; residual water
Citation Formats
Hays, Kevin A., Ruther, Rose E., Kukay, Alexander J., Cao, Pengfei, Saito, Tomonori, Wood, David L., and Li, Jianlin. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?. United States: N. p., 2018.
Web. doi:10.1016/j.jpowsour.2018.02.085.
Hays, Kevin A., Ruther, Rose E., Kukay, Alexander J., Cao, Pengfei, Saito, Tomonori, Wood, David L., & Li, Jianlin. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?. United States. doi:10.1016/j.jpowsour.2018.02.085.
Hays, Kevin A., Ruther, Rose E., Kukay, Alexander J., Cao, Pengfei, Saito, Tomonori, Wood, David L., and Li, Jianlin. Sun .
"What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?". United States. doi:10.1016/j.jpowsour.2018.02.085. https://www.osti.gov/servlets/purl/1424453.
@article{osti_1424453,
title = {What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?},
author = {Hays, Kevin A. and Ruther, Rose E. and Kukay, Alexander J. and Cao, Pengfei and Saito, Tomonori and Wood, David L. and Li, Jianlin},
abstractNote = {Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this paper, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency than those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Finally, Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.},
doi = {10.1016/j.jpowsour.2018.02.085},
journal = {Journal of Power Sources},
number = ,
volume = 384,
place = {United States},
year = {2018},
month = {3}
}
Web of Science
Figures / Tables:

Works referencing / citing this record:
Moisture Adsorption Behavior in Anodes for Li‐Ion Batteries
journal, May 2019
- Eser, Jochen C.; Wirsching, Tobias; Weidler, Peter G.
- Energy Technology, Vol. 8, Issue 2
Silicon-Dominant Anodes Based on Microscale Silicon Particles under Partial Lithiation with High Capacity and Cycle Stability
journal, January 2019
- Jantke, Dominik; Bernhard, Rebecca; Hanelt, Eckhard
- Journal of The Electrochemical Society, Vol. 166, Issue 16