DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis

Abstract

ABSTRACT Hydrogenotrophic methanogenesis occurs in multiple environments, ranging from the intestinal tracts of animals to anaerobic sediments and hot springs. Energy conservation in hydrogenotrophic methanogens was long a mystery; only within the last decade was it reported that net energy conservation for growth depends on electron bifurcation. In this work, we focus on Methanococcus maripaludis , a well-studied hydrogenotrophic marine methanogen. To better understand hydrogenotrophic methanogenesis and compare it with methylotrophic methanogenesis that utilizes oxidative phosphorylation rather than electron bifurcation, we have built iMR539, a genome scale metabolic reconstruction that accounts for 539 of the 1,722 protein-coding genes of M. maripaludis strain S2. Our reconstructed metabolic network uses recent literature to not only represent the central electron bifurcation reaction but also incorporate vital biosynthesis and assimilation pathways, including unique cofactor and coenzyme syntheses. We show that our model accurately predicts experimental growth and gene knockout data, with 93% accuracy and a Matthews correlation coefficient of 0.78. Furthermore, we use our metabolic network reconstruction to probe the implications of electron bifurcation by showing its essentiality, as well as investigating the infeasibility of aceticlastic methanogenesis in the network. Additionally, we demonstrate a method of applying thermodynamic constraints to a metabolic model tomore » quickly estimate overall free-energy changes between what comes in and out of the cell. Finally, we describe a novel reconstruction-specific computational toolbox we created to improve usability. Together, our results provide a computational network for exploring hydrogenotrophic methanogenesis and confirm the importance of electron bifurcation in this process. IMPORTANCE Understanding and applying hydrogenotrophic methanogenesis is a promising avenue for developing new bioenergy technologies around methane gas. Although a significant portion of biological methane is generated through this environmentally ubiquitous pathway, existing methanogen models portray the more traditional energy conservation mechanisms that are found in other methanogens. We have constructed a genome scale metabolic network of Methanococcus maripaludis that explicitly accounts for all major reactions involved in hydrogenotrophic methanogenesis. Our reconstruction demonstrates the importance of electron bifurcation in central metabolism, providing both a window into hydrogenotrophic methanogenesis and a hypothesis-generating platform to fuel metabolic engineering efforts.« less

Authors:
 [1];  [2];  [3];  [4];  [2];  [1];
  1. Institute for Systems Biology, Seattle, Washington, USA
  2. Department of Microbiology, University of Washington, Seattle, Washington, USA
  3. Jiangnan University, Wuxi, China
  4. Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1785555
Alternate Identifier(s):
OSTI ID: 1424214
Grant/Contract Number:  
AR0000426
Resource Type:
Published Article
Journal Name:
Journal of Bacteriology
Additional Journal Information:
Journal Name: Journal of Bacteriology Journal Volume: 198 Journal Issue: 24; Journal ID: ISSN 0021-9193
Publisher:
American Society for Microbiology
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Richards, Matthew A., Lie, Thomas J., Zhang, Juan, Ragsdale, Stephen W., Leigh, John A., Price, Nathan D., and Zhulin, ed., I. B. Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis. United States: N. p., 2016. Web. doi:10.1128/JB.00571-16.
Richards, Matthew A., Lie, Thomas J., Zhang, Juan, Ragsdale, Stephen W., Leigh, John A., Price, Nathan D., & Zhulin, ed., I. B. Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis. United States. https://doi.org/10.1128/JB.00571-16
Richards, Matthew A., Lie, Thomas J., Zhang, Juan, Ragsdale, Stephen W., Leigh, John A., Price, Nathan D., and Zhulin, ed., I. B. Thu . "Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis". United States. https://doi.org/10.1128/JB.00571-16.
@article{osti_1785555,
title = {Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis},
author = {Richards, Matthew A. and Lie, Thomas J. and Zhang, Juan and Ragsdale, Stephen W. and Leigh, John A. and Price, Nathan D. and Zhulin, ed., I. B.},
abstractNote = {ABSTRACT Hydrogenotrophic methanogenesis occurs in multiple environments, ranging from the intestinal tracts of animals to anaerobic sediments and hot springs. Energy conservation in hydrogenotrophic methanogens was long a mystery; only within the last decade was it reported that net energy conservation for growth depends on electron bifurcation. In this work, we focus on Methanococcus maripaludis , a well-studied hydrogenotrophic marine methanogen. To better understand hydrogenotrophic methanogenesis and compare it with methylotrophic methanogenesis that utilizes oxidative phosphorylation rather than electron bifurcation, we have built iMR539, a genome scale metabolic reconstruction that accounts for 539 of the 1,722 protein-coding genes of M. maripaludis strain S2. Our reconstructed metabolic network uses recent literature to not only represent the central electron bifurcation reaction but also incorporate vital biosynthesis and assimilation pathways, including unique cofactor and coenzyme syntheses. We show that our model accurately predicts experimental growth and gene knockout data, with 93% accuracy and a Matthews correlation coefficient of 0.78. Furthermore, we use our metabolic network reconstruction to probe the implications of electron bifurcation by showing its essentiality, as well as investigating the infeasibility of aceticlastic methanogenesis in the network. Additionally, we demonstrate a method of applying thermodynamic constraints to a metabolic model to quickly estimate overall free-energy changes between what comes in and out of the cell. Finally, we describe a novel reconstruction-specific computational toolbox we created to improve usability. Together, our results provide a computational network for exploring hydrogenotrophic methanogenesis and confirm the importance of electron bifurcation in this process. IMPORTANCE Understanding and applying hydrogenotrophic methanogenesis is a promising avenue for developing new bioenergy technologies around methane gas. Although a significant portion of biological methane is generated through this environmentally ubiquitous pathway, existing methanogen models portray the more traditional energy conservation mechanisms that are found in other methanogens. We have constructed a genome scale metabolic network of Methanococcus maripaludis that explicitly accounts for all major reactions involved in hydrogenotrophic methanogenesis. Our reconstruction demonstrates the importance of electron bifurcation in central metabolism, providing both a window into hydrogenotrophic methanogenesis and a hypothesis-generating platform to fuel metabolic engineering efforts.},
doi = {10.1128/JB.00571-16},
journal = {Journal of Bacteriology},
number = 24,
volume = 198,
place = {United States},
year = {Thu Dec 15 00:00:00 EST 2016},
month = {Thu Dec 15 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1128/JB.00571-16

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment
journal, January 1983

  • Jones, W. Jack; Paynter, M. J. B.; Gupta, R.
  • Archives of Microbiology, Vol. 135, Issue 2
  • DOI: 10.1007/BF00408015

Methanogens: a window into ancient sulfur metabolism
journal, May 2012


Effects of H2 and Formate on Growth Yield and Regulation of Methanogenesis in Methanococcus maripaludis
journal, January 2013

  • Costa, K. C.; Yoon, S. H.; Pan, M.
  • Journal of Bacteriology, Vol. 195, Issue 7
  • DOI: 10.1128/JB.02141-12

Climate consequences of natural gas as a bridge fuel
journal, January 2013


Methane oxidation by anaerobic archaea for conversion to liquid fuels
journal, November 2014

  • Mueller, Thomas J.; Grisewood, Matthew J.; Nazem-Bokaee, Hadi
  • Journal of Industrial Microbiology & Biotechnology, Vol. 42, Issue 3
  • DOI: 10.1007/s10295-014-1548-7

The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases
journal, October 2009

  • Caspi, Ron; Altman, Tomer; Dale, Joseph M.
  • Nucleic Acids Research, Vol. 38, Issue suppl_1
  • DOI: 10.1093/nar/gkp875

Anaerobic microbial metabolism can proceed close to thermodynamic limits
journal, January 2002

  • Jackson, Bradley E.; McInerney, Michael J.
  • Nature, Vol. 415, Issue 6870
  • DOI: 10.1038/415454a

Genome-scale models of microbial cells: evaluating the consequences of constraints
journal, November 2004

  • Price, Nathan D.; Reed, Jennifer L.; Palsson, Bernhard Ø.
  • Nature Reviews Microbiology, Vol. 2, Issue 11
  • DOI: 10.1038/nrmicro1023

Inhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides.
journal, January 1976


Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics
journal, December 2001

  • Graham, David E.; White, Robert H.
  • Natural Product Reports, Vol. 19, Issue 2
  • DOI: 10.1039/b103714p

Group Contribution Method for Thermodynamic Analysis of Complex Metabolic Networks
journal, August 2008

  • Jankowski, Matthew D.; Henry, Christopher S.; Broadbelt, Linda J.
  • Biophysical Journal, Vol. 95, Issue 3
  • DOI: 10.1529/biophysj.107.124784

Purification of a cytochrome b containing H2:heterodisulfide oxidoreductase complex from membranes of Methanosarcina barkeri
journal, April 1993


High-throughput generation, optimization and analysis of genome-scale metabolic models
journal, August 2010

  • Henry, Christopher S.; DeJongh, Matthew; Best, Aaron A.
  • Nature Biotechnology, Vol. 28, Issue 9
  • DOI: 10.1038/nbt.1672

Metabolic versatility in methanogens
journal, October 2014


Metabolic modeling of a mutualistic microbial community
journal, January 2007

  • Stolyar, Sergey; Van Dien, Steve; Hillesland, Kristina Linnea
  • Molecular Systems Biology, Vol. 3, Issue 1
  • DOI: 10.1038/msb4100131

Diverse homologues of the archaeal repressor NrpR function similarly in nitrogen regulation
journal, June 2007


Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology
journal, December 2009

  • Milne, Caroline B.; Kim, Pan-Jun; Eddy, James A.
  • Biotechnology Journal, Vol. 4, Issue 12
  • DOI: 10.1002/biot.200900234

KEGG: Kyoto Encyclopedia of Genes and Genomes
journal, January 2000

  • Kanehisa, Minoru; Goto, Susumu
  • Nucleic Acids Research, Vol. 28, Issue 1, p. 27-30
  • DOI: 10.1093/nar/28.1.27

Pathway of acetate assimilation in autotrophic and heterotrophic methanococci.
journal, November 1987


Advances in flux balance analysis
journal, October 2003

  • Kauffman, Kenneth J.; Prakash, Purusharth; Edwards, Jeremy S.
  • Current Opinion in Biotechnology, Vol. 14, Issue 5
  • DOI: 10.1016/j.copbio.2003.08.001

Comparison of the predicted and observed secondary structure of T4 phage lysozyme
journal, October 1975


BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models
journal, January 2010

  • Li, Chen; Donizelli, Marco; Rodriguez, Nicolas
  • BMC Systems Biology, Vol. 4, Issue 1
  • DOI: 10.1186/1752-0509-4-92

A genome-scale metabolic model of Methanococcus maripaludis S2 for CO 2 capture and conversion to methane
journal, January 2014

  • Goyal, Nishu; Widiastuti, Hanifah; Karimi, I. A.
  • Mol. BioSyst., Vol. 10, Issue 5
  • DOI: 10.1039/C3MB70421A

Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis
journal, January 2009

  • Xia, Qiangwei; Wang, Tiansong; Hendrickson, Erik L.
  • BMC Microbiology, Vol. 9, Issue 1
  • DOI: 10.1186/1471-2180-9-149

Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis
journal, March 2013

  • Sarmiento, F.; Mrazek, J.; Whitman, W. B.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 12
  • DOI: 10.1073/pnas.1220225110

Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
journal, August 2011

  • Schellenberger, Jan; Que, Richard; Fleming, Ronan M. T.
  • Nature Protocols, Vol. 6, Issue 9
  • DOI: 10.1038/nprot.2011.308

Unusual Coenzymes of Methanogenesis
journal, June 1990


Global Responses of Methanococcus maripaludis to Specific Nutrient Limitations and Growth Rate
journal, January 2008

  • Hendrickson, E. L.; Liu, Y.; Rosas-Sandoval, G.
  • Journal of Bacteriology, Vol. 190, Issue 6
  • DOI: 10.1128/JB.01805-07

Genome-Scale Metabolic Reconstruction and Hypothesis Testing in the Methanogenic Archaeon Methanosarcina acetivorans C2A
journal, December 2011

  • Benedict, M. N.; Gonnerman, M. C.; Metcalf, W. W.
  • Journal of Bacteriology, Vol. 194, Issue 4
  • DOI: 10.1128/JB.06040-11

Coenzyme F420-Dependent Sulfite Reductase-Enabled Sulfite Detoxification and Use of Sulfite as a Sole Sulfur Source by Methanococcus maripaludis
journal, March 2008

  • Johnson, E. F.; Mukhopadhyay, B.
  • Applied and Environmental Microbiology, Vol. 74, Issue 11
  • DOI: 10.1128/AEM.00098-08

Genome-scale modeling for metabolic engineering
journal, January 2015

  • Simeonidis, Evangelos; Price, Nathan D.
  • Journal of Industrial Microbiology & Biotechnology, Vol. 42, Issue 3
  • DOI: 10.1007/s10295-014-1576-3

Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase
journal, June 2010

  • Costa, K. C.; Wong, P. M.; Wang, T.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 24
  • DOI: 10.1073/pnas.1003653107

Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis
journal, August 2012

  • Lie, T. J.; Costa, K. C.; Lupa, B.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 38
  • DOI: 10.1073/pnas.1208779109

The biomass objective function
journal, June 2010


Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment in Genome-Scale Metabolic Models
journal, October 2014

  • Benedict, Matthew N.; Mundy, Michael B.; Henry, Christopher S.
  • PLoS Computational Biology, Vol. 10, Issue 10
  • DOI: 10.1371/journal.pcbi.1003882

Complete Genome Sequence of the Genetically Tractable Hydrogenotrophic Methanogen Methanococcus maripaludis
journal, October 2004


A systems level predictive model for global gene regulation of methanogenesis in a hydrogenotrophic methanogen
journal, October 2013

  • Yoon, Sung Ho; Turkarslan, Serdar; Reiss, David J.
  • Genome Research, Vol. 23, Issue 11
  • DOI: 10.1101/gr.153916.112

A protocol for generating a high-quality genome-scale metabolic reconstruction
journal, January 2010


Comparative Analysis of Yeast Metabolic Network Models Highlights Progress, Opportunities for Metabolic Reconstruction
journal, November 2015


A comprehensive genome‐scale reconstruction of Escherichia coli metabolism—2011
journal, January 2011

  • Orth, Jeffrey D.; Conrad, Tom M.; Na, Jessica
  • Molecular Systems Biology, Vol. 7, Issue 1
  • DOI: 10.1038/msb.2011.65

The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes
journal, September 2005


H2-Independent Growth of the Hydrogenotrophic Methanogen Methanococcus maripaludis
journal, February 2013


Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway
journal, July 2005

  • Welander, P. V.; Metcalf, W. W.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 30
  • DOI: 10.1073/pnas.0502623102

eQuilibrator--the biochemical thermodynamics calculator
journal, November 2011

  • Flamholz, A.; Noor, E.; Bar-Even, A.
  • Nucleic Acids Research, Vol. 40, Issue D1
  • DOI: 10.1093/nar/gkr874

Three decades of global methane sources and sinks
journal, September 2013

  • Kirschke, Stefanie; Bousquet, Philippe; Ciais, Philippe
  • Nature Geoscience, Vol. 6, Issue 10
  • DOI: 10.1038/ngeo1955

Rethinking biological activation of methane and conversion to liquid fuels
journal, April 2014


A genome‐scale metabolic reconstruction for Escherichia coli K‐12 MG1655 that accounts for 1260 ORFs and thermodynamic information
journal, January 2007

  • Feist, Adam M.; Henry, Christopher S.; Reed, Jennifer L.
  • Molecular Systems Biology, Vol. 3, Issue 1
  • DOI: 10.1038/msb4100155

Paint4Net: COBRA Toolbox extension for visualization of stoichiometric models of metabolism
journal, August 2012


Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation
journal, February 2013

  • Buckel, Wolfgang; Thauer, Rudolf K.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1827, Issue 2
  • DOI: 10.1016/j.bbabio.2012.07.002

Formate-Dependent H2 Production by the Mesophilic Methanogen Methanococcus maripaludis
journal, September 2008

  • Lupa, B.; Hendrickson, E. L.; Leigh, J. A.
  • Applied and Environmental Microbiology, Vol. 74, Issue 21
  • DOI: 10.1128/AEM.01455-08

An Intertwined Evolutionary History of Methanogenic Archaea and Sulfate Reduction
journal, September 2012


The Wolfe cycle comes full circle
journal, September 2012


Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens
journal, July 2014

  • Welte, Cornelia; Deppenmeier, Uwe
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1837, Issue 7
  • DOI: 10.1016/j.bbabio.2013.12.002

Disruption of the Operon Encoding Ehb Hydrogenase Limits Anabolic CO2 Assimilation in the Archaeon Methanococcus maripaludis
journal, February 2006


Genomically and biochemically accurate metabolic reconstruction of Methanosarcina barkeri Fusaro, iMG746
journal, March 2013

  • Gonnerman, Matthew C.; Benedict, Matthew N.; Feist, Adam M.
  • Biotechnology Journal, Vol. 8, Issue 9
  • DOI: 10.1002/biot.201200266

Characterization of Energy-Conserving Hydrogenase B in Methanococcus maripaludis
journal, May 2010

  • Major, T. A.; Liu, Y.; Whitman, W. B.
  • Journal of Bacteriology, Vol. 192, Issue 15
  • DOI: 10.1128/JB.01446-09

Methanogenic archaea: ecologically relevant differences in energy conservation
journal, June 2008

  • Thauer, Rudolf K.; Kaster, Anne-Kristin; Seedorf, Henning
  • Nature Reviews Microbiology, Vol. 6, Issue 8
  • DOI: 10.1038/nrmicro1931

Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks
journal, June 2007

  • Hoppe, Andreas; Hoffmann, Sabrina; Holzhütter, Hermann-Georg
  • BMC Systems Biology, Vol. 1, Issue 1
  • DOI: 10.1186/1752-0509-1-23

Non-CO2 greenhouse gases and climate change
journal, August 2011

  • Montzka, S. A.; Dlugokencky, E. J.; Butler, J. H.
  • Nature, Vol. 476, Issue 7358
  • DOI: 10.1038/nature10322

Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea
journal, January 2011

  • Kaster, A. -K.; Moll, J.; Parey, K.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 7
  • DOI: 10.1073/pnas.1016761108

ChEBI: a database and ontology for chemical entities of biological interest
journal, December 2007

  • Degtyarenko, K.; de Matos, P.; Ennis, M.
  • Nucleic Acids Research, Vol. 36, Issue Database
  • DOI: 10.1093/nar/gkm791

The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models
journal, March 2003


Continuous culture of under defined nutrient conditions
journal, September 2004


Biosynthesis of archaeal membrane ether lipids
journal, January 2014


Thermodynamics-Based Metabolic Flux Analysis
journal, March 2007

  • Henry, Christopher S.; Broadbelt, Linda J.; Hatzimanikatis, Vassily
  • Biophysical Journal, Vol. 92, Issue 5
  • DOI: 10.1529/biophysj.106.093138

Transparency in metabolic network reconstruction enables scalable biological discovery
journal, August 2015