skip to main content


Title: The light composite Higgs boson in strong extended technicolor

This paper extends an earlier one describing the Higgs boson H as a light composite scalar in a strong extended technicolor model of electroweak symmetry breaking. The Higgs mass M H is made much smaller than Λ ETC by tuning the ETC coupling very close to the critical value for electroweak symmetry breaking. The technicolor interaction, neglected in the earlier paper, is considered here. Its weakness relative to extended technicolor is essential to understanding the lightness of H compared to the low-lying spin-one technihadrons. Technicolor cannot be completely ignored, but implementing technigluon exchange together with strong extended technicolor appears difficult. We propose a solution that turns out to leave the results of the earlier paper essentially unchanged. An argument is then presented that masses of the spin-one technifermion bound states, ρ H and a H , are much larger than M H and, plausibly, controlled by technicolor. Assuming M ρH and M aH are in the TeV-energy region, we identify ρ H and a H with the diboson excesses observed near 2 TeV by ATLAS and CMS in LHC Run 1 data, and we discuss their phenomenology for Runs 2 and 3.
 [1] ;  [1]
  1. Boston Univ., MA (United States). Dept. of Physics
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of High Energy Physics (Online)
Additional Journal Information:
Journal Name: Journal of High Energy Physics (Online); Journal Volume: 2017; Journal Issue: 6; Journal ID: ISSN 1029-8479
Springer Berlin
Research Org:
Boston Univ., MA (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; Higgs physics; technicolor and composite models
OSTI Identifier: