DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrahigh thermal conductivity of isotopically enriched silicon

Abstract

Most of the stable elements possess two and more stable isotopes. The physical properties of materials composed of such elements depend on the isotopic abundance to some extent. A remarkably robust isotope effect is observed in the phonon thermal conductivity, the principal mechanism of heat conduction in nonmetallic crystals. An isotopic disorder due to random distribution of the isotopes in the crystal lattice sites results in a rather strong phonon scattering and, consequently, in a reduction of thermal conductivity. In this paper, we present new results of accurate and precise measurements of thermal conductivity κ(T) for silicon single crystals having three different isotopic compositions at temperatures T from 2.4 to 420 K. The highly enriched crystal containing 99.995% of 28Si, which is one of the most perfect crystals ever synthesized, demonstrates a thermal conductivity of about 450 ± 10 W cm-1K-1 at 24 K, the highest measured value among bulk dielectrics, which is ten times greater than the one for its counterpart natSi with the natural isotopic constitution. For highly enriched crystal 28Si and crystal natSi, the measurements were performed for two orientations [001] and [011], a magnitude of the phonon focusing effect on thermal conductivity was determined accurately atmore » low temperatures. The anisotropy of thermal conductivity disappears above 31 K. The influence of the boundary scattering on thermal conductivity persists sizable up to much higher temperatures (~80 K). The κ(T) measured in this work gives the most accurate approximation of the intrinsic thermal conductivity of single crystal silicon which is determined solely by the anharmonic phonon processes and diffusive boundary scattering over a wide temperature range.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2];  [2];  [3]; ORCiD logo [3];  [4];  [5]
  1. National Research Centre (NRC), Moscow (Russian Federation). Kurchatov Inst. (NRCKI)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  3. Leibniz-Institut für Kristallzüchtung, Berlin (Germany)
  4. VITCON Projectconsult GmbH, Jena (Germany)
  5. Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; Russian Foundation for Basic Research; USDOE
OSTI Identifier:
1530344
Alternate Identifier(s):
OSTI ID: 1423925
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 123; Journal Issue: 9; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Inyushkin, Alexander V., Taldenkov, Alexander N., Ager, Joel W., Haller, Eugene E., Riemann, Helge, Abrosimov, Nikolay V., Pohl, Hans-Joachim, and Becker, Peter. Ultrahigh thermal conductivity of isotopically enriched silicon. United States: N. p., 2018. Web. doi:10.1063/1.5017778.
Inyushkin, Alexander V., Taldenkov, Alexander N., Ager, Joel W., Haller, Eugene E., Riemann, Helge, Abrosimov, Nikolay V., Pohl, Hans-Joachim, & Becker, Peter. Ultrahigh thermal conductivity of isotopically enriched silicon. United States. https://doi.org/10.1063/1.5017778
Inyushkin, Alexander V., Taldenkov, Alexander N., Ager, Joel W., Haller, Eugene E., Riemann, Helge, Abrosimov, Nikolay V., Pohl, Hans-Joachim, and Becker, Peter. Tue . "Ultrahigh thermal conductivity of isotopically enriched silicon". United States. https://doi.org/10.1063/1.5017778. https://www.osti.gov/servlets/purl/1530344.
@article{osti_1530344,
title = {Ultrahigh thermal conductivity of isotopically enriched silicon},
author = {Inyushkin, Alexander V. and Taldenkov, Alexander N. and Ager, Joel W. and Haller, Eugene E. and Riemann, Helge and Abrosimov, Nikolay V. and Pohl, Hans-Joachim and Becker, Peter},
abstractNote = {Most of the stable elements possess two and more stable isotopes. The physical properties of materials composed of such elements depend on the isotopic abundance to some extent. A remarkably robust isotope effect is observed in the phonon thermal conductivity, the principal mechanism of heat conduction in nonmetallic crystals. An isotopic disorder due to random distribution of the isotopes in the crystal lattice sites results in a rather strong phonon scattering and, consequently, in a reduction of thermal conductivity. In this paper, we present new results of accurate and precise measurements of thermal conductivity κ(T) for silicon single crystals having three different isotopic compositions at temperatures T from 2.4 to 420 K. The highly enriched crystal containing 99.995% of 28Si, which is one of the most perfect crystals ever synthesized, demonstrates a thermal conductivity of about 450 ± 10 W cm-1K-1 at 24 K, the highest measured value among bulk dielectrics, which is ten times greater than the one for its counterpart natSi with the natural isotopic constitution. For highly enriched crystal 28Si and crystal natSi, the measurements were performed for two orientations [001] and [011], a magnitude of the phonon focusing effect on thermal conductivity was determined accurately at low temperatures. The anisotropy of thermal conductivity disappears above 31 K. The influence of the boundary scattering on thermal conductivity persists sizable up to much higher temperatures (~80 K). The κ(T) measured in this work gives the most accurate approximation of the intrinsic thermal conductivity of single crystal silicon which is determined solely by the anharmonic phonon processes and diffusive boundary scattering over a wide temperature range.},
doi = {10.1063/1.5017778},
journal = {Journal of Applied Physics},
number = 9,
volume = 123,
place = {United States},
year = {Tue Mar 06 00:00:00 EST 2018},
month = {Tue Mar 06 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermal diffusivity of isotopically enriched C 12 diamond
journal, July 1990


Intrinsic lattice thermal conductivity of semiconductors from first principles
journal, December 2007

  • Broido, D. A.; Malorny, M.; Birner, G.
  • Applied Physics Letters, Vol. 91, Issue 23
  • DOI: 10.1063/1.2822891

A Method of Measuring Thermal Conductivity in the Presence of Extraneous Heat Currents and the Thermal Conductivity of Brass at Low Temperatures
journal, March 1973

  • Cappelletti, R. L.; Ishikawa, M.
  • Review of Scientific Instruments, Vol. 44, Issue 3
  • DOI: 10.1063/1.1686112

Isotope scattering of dispersive phonons in Ge
journal, January 1983


Thermal conductivity of isotopically enriched 71 GaAs crystal
journal, June 2003

  • Inyushkin, A. V.; Taldenkov, A. N.; Yakubovsky, A. Yu
  • Semiconductor Science and Technology, Vol. 18, Issue 7
  • DOI: 10.1088/0268-1242/18/7/315

The heat capacity of pure silicon and germanium and properties of their vibrational frequency spectra
journal, March 1959


Heat transport in silicon from first-principles calculations
journal, August 2011


Isotopically engineered semiconductors
journal, April 1995

  • Haller, E. E.
  • Journal of Applied Physics, Vol. 77, Issue 7
  • DOI: 10.1063/1.358700

Thermal conductivity of isotopically enriched 28Si: revisited
journal, August 2004

  • Kremer, R. K.; Graf, K.; Cardona, M.
  • Solid State Communications, Vol. 131, Issue 8, p. 499-503
  • DOI: 10.1016/j.ssc.2004.06.022

The Scattering of Low-Frequency Lattice Waves by Static Imperfections
journal, December 1955


Phonon scattering by impurity platelet precipitates in diamond
journal, May 1974


Kinetic coefficients in isotopically disordered crystals
journal, May 2002


Thermal Conductivity of the Elements
journal, April 1972

  • Ho, C. Y.; Powell, R. W.; Liley, P. E.
  • Journal of Physical and Chemical Reference Data, Vol. 1, Issue 2
  • DOI: 10.1063/1.3253100

Thermal conductivity of diamond between 170 and 1200 K and the isotope effect
journal, June 1993


Thermal conductivity of germanium crystals with different isotopic compositions
journal, October 1997


Effect of phonon focusing on the temperature dependence of thermal conductivity of silicon: Effect of phonon focusing on thermal conductivity of silicon
journal, February 2014

  • Kuleyev, I. I.; Kuleyev, I. G.; Bakharev, S. M.
  • physica status solidi (b), Vol. 251, Issue 5
  • DOI: 10.1002/pssb.201350332

Stimulated Raman scattering-active isotopically pure 12С and 13С diamond crystals: A milestone in the development of diamond photonics
journal, September 2016


Isotope effect in the thermal conductivity of germanium single crystals
journal, March 1996

  • Ozhogin, V. I.; Inyushkin, A. V.; Taldenkov, A. N.
  • Journal of Experimental and Theoretical Physics Letters, Vol. 63, Issue 6
  • DOI: 10.1134/1.567053

Theory of Thermal Conductivity of Solids at Low Temperatures
journal, January 1961


Anharmonic processes of scattering and absorption of slow quasi-transverse modes in cubic crystals with positive and negative anisotropies of second-order elastic moduli
journal, October 2008


Isotopic and Other Types of Thermal Resistance in Germanium
journal, May 1958


High-Purity, Isotopically Enriched Bulk Silicon
journal, January 2005

  • Ager, J. W.; Beeman, J. W.; Hansen, W. L.
  • Journal of The Electrochemical Society, Vol. 152, Issue 6
  • DOI: 10.1149/1.1901674

Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors
journal, November 2002


Anisotropic Heat Conduction in Cubic Crystals in the Boundary Scattering Regime
journal, November 1970


Heat capacity of isotopically enriched 28Si, 29Si and 30Si in the temperature range 4K<T<100K
journal, March 2005


Examining the Callaway model for lattice thermal conductivity
journal, July 2014


Determination of the Avogadro Constant by Counting the Atoms in a Si 28 Crystal
journal, January 2011


Effect of exchange–correlation on first-principles-driven lattice thermal conductivity predictions of crystalline silicon
journal, December 2015


Lattice thermal conductivity of silicon from empirical interatomic potentials
journal, July 2005


From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures
journal, April 2014

  • de Tomas, C.; Cantarero, A.; Lopeandia, A. F.
  • Journal of Applied Physics, Vol. 115, Issue 16
  • DOI: 10.1063/1.4871672

Ab initio theory of the lattice thermal conductivity in diamond
journal, September 2009


Phonon conduction in elastically anisotropic cubic crystals
journal, December 1982


The effect of normal phonon-phonon scattering processes on the maximum thermal conductivity of isotopically pure silicon crystals
journal, September 2002

  • Kuleev, I. G.; Kuleev, I. I.
  • Journal of Experimental and Theoretical Physics, Vol. 95, Issue 3
  • DOI: 10.1134/1.1513821

Enrichment of silicon for a better kilogram
journal, January 2010

  • Becker, P.; Pohl, H. -J.; Riemann, H.
  • physica status solidi (a), Vol. 207, Issue 1
  • DOI: 10.1002/pssa.200925148

A new generation of 99.999% enriched 28 Si single crystals for the determination of Avogadro’s constant
journal, July 2017


Model for Lattice Thermal Conductivity at Low Temperatures
journal, February 1959


On the isotope effect in thermal conductivity of silicon
journal, November 2004

  • Inyushkin, A. V.; Taldenkov, A. N.; Gibin, A. M.
  • physica status solidi (c), Vol. 1, Issue 11
  • DOI: 10.1002/pssc.200405341

Kinetic coefficients in isotopically disordered crystals [Kineticheskie koeffitsienty v kristallakh s izotopicheskim besporyadkom]
journal, January 2002


Ab initio theory of the lattice thermal conductivity in diamond
text, January 2009

  • Ward, Alister; Broido, David; Stewart, Derek A.
  • Universität Regensburg
  • DOI: 10.5283/epub.9466

Heat transport in silicon from first principles calculations
text, January 2011


Works referencing / citing this record:

Thermal conductivity of strained silicon: Molecular dynamics insight and kinetic theory approach
journal, August 2019

  • Kuryliuk, Vasyl; Nepochatyi, Oleksii; Chantrenne, Patrice
  • Journal of Applied Physics, Vol. 126, Issue 5
  • DOI: 10.1063/1.5108780

Heat transfer in rough nanofilms and nanowires using full band ab initio Monte Carlo simulation
journal, November 2018

  • Davier, B.; Larroque, J.; Dollfus, P.
  • Journal of Physics: Condensed Matter, Vol. 30, Issue 49
  • DOI: 10.1088/1361-648x/aaea4f

Thermal conductivity of strained silicon: molecular dynamics insight and kinetic theory approach
text, January 2019