DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular Simulations of the Synthesis of Periodic Mesoporous Silica Phases at High Surfactant Concentrations

Abstract

Molecular dynamics simulations of a coarse-grained model are used to study the formation mechanism of periodic mesoporous silica over a wide range of cationic surfactant concentrations. This follows up on an earlier study of systems with low surfactant concentrations. We started by studying the phase diagram of the surfactant-water system and found that our model shows good qualitative agreement with experiments with respect to the surfactant concentrations where various phases appear. We then considered the impact of silicate species upon the morphologies formed. We have found that even in concentrated surfactant systems ← in the concentration range where pure surfactant solutions yield a liquid crystal phase ← the liquid-crystal templating mechanism is not viable because the preformed liquid crystal collapses as silica monomers are added into the solution. Upon the addition of silica dimers, a new phaseseparated hexagonal array is formed. The preformed liquid crystals were found to be unstable in the presence of monomeric silicates. In addition, the silica dimer is found to be essential for mesoscale ordering at both low and high surfactant concentrations. Our results support the view that a cooperative interaction of anionic silica oligomers and cationic surfactants determines the mesostructure formation in the M41S familymore » of materials.« less

Authors:
ORCiD logo;  [1]; ORCiD logo [2];  [3]; ORCiD logo [4]; ;
  1. CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal, LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
  2. CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
  3. LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
  4. Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
Publication Date:
Research Org.:
Univ. of Massachusetts, Amherst, MA (United States); University of Strathclyde
Sponsoring Org.:
USDOE
OSTI Identifier:
1352290
Alternate Identifier(s):
OSTI ID: 1423812; OSTI ID: 1423813; OSTI ID: 1507992
Grant/Contract Number:  
FG02-07ER46466
Resource Type:
Published Article
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Name: Journal of Physical Chemistry. C Journal Volume: 121 Journal Issue: 8; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Chien, Szu-Chia, Pérez-Sánchez, Germán, Gomes, José R. B., Cordeiro, M. Natália D. S., Jorge, Miguel, Auerbach, Scott M., and Monson, Peter A. Molecular Simulations of the Synthesis of Periodic Mesoporous Silica Phases at High Surfactant Concentrations. United States: N. p., 2017. Web. doi:10.1021/acs.jpcc.6b09429.
Chien, Szu-Chia, Pérez-Sánchez, Germán, Gomes, José R. B., Cordeiro, M. Natália D. S., Jorge, Miguel, Auerbach, Scott M., & Monson, Peter A. Molecular Simulations of the Synthesis of Periodic Mesoporous Silica Phases at High Surfactant Concentrations. United States. https://doi.org/10.1021/acs.jpcc.6b09429
Chien, Szu-Chia, Pérez-Sánchez, Germán, Gomes, José R. B., Cordeiro, M. Natália D. S., Jorge, Miguel, Auerbach, Scott M., and Monson, Peter A. Fri . "Molecular Simulations of the Synthesis of Periodic Mesoporous Silica Phases at High Surfactant Concentrations". United States. https://doi.org/10.1021/acs.jpcc.6b09429.
@article{osti_1352290,
title = {Molecular Simulations of the Synthesis of Periodic Mesoporous Silica Phases at High Surfactant Concentrations},
author = {Chien, Szu-Chia and Pérez-Sánchez, Germán and Gomes, José R. B. and Cordeiro, M. Natália D. S. and Jorge, Miguel and Auerbach, Scott M. and Monson, Peter A.},
abstractNote = {Molecular dynamics simulations of a coarse-grained model are used to study the formation mechanism of periodic mesoporous silica over a wide range of cationic surfactant concentrations. This follows up on an earlier study of systems with low surfactant concentrations. We started by studying the phase diagram of the surfactant-water system and found that our model shows good qualitative agreement with experiments with respect to the surfactant concentrations where various phases appear. We then considered the impact of silicate species upon the morphologies formed. We have found that even in concentrated surfactant systems ← in the concentration range where pure surfactant solutions yield a liquid crystal phase ← the liquid-crystal templating mechanism is not viable because the preformed liquid crystal collapses as silica monomers are added into the solution. Upon the addition of silica dimers, a new phaseseparated hexagonal array is formed. The preformed liquid crystals were found to be unstable in the presence of monomeric silicates. In addition, the silica dimer is found to be essential for mesoscale ordering at both low and high surfactant concentrations. Our results support the view that a cooperative interaction of anionic silica oligomers and cationic surfactants determines the mesostructure formation in the M41S family of materials.},
doi = {10.1021/acs.jpcc.6b09429},
journal = {Journal of Physical Chemistry. C},
number = 8,
volume = 121,
place = {United States},
year = {Fri Feb 17 00:00:00 EST 2017},
month = {Fri Feb 17 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acs.jpcc.6b09429

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermochemistry of aqueous silicate solution precursors to ceramics
journal, January 1997


Phase Separation and Liquid Crystal Self-Assembly in Surfactant−Inorganic−Solvent Systems
journal, March 2003

  • Siperstein, Flor R.; Gubbins, Keith E.
  • Langmuir, Vol. 19, Issue 6
  • DOI: 10.1021/la026410d

Modeling Self-Assembly of Silica/Surfactant Mesostructures in the Templated Synthesis of Nanoporous Solids
journal, February 2013

  • Pérez-Sánchez, Germán; Gomes, José R. B.; Jorge, Miguel
  • Langmuir, Vol. 29, Issue 7
  • DOI: 10.1021/la3046274

Synthesis of High-Quality MCM-48 and MCM-41 by Means of the GEMINI Surfactant Method
journal, October 1998

  • Van Der Voort, P.; Mathieu, M.; Mees, F.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 44
  • DOI: 10.1021/jp982653w

Cooperative organization of inorganic-surfactant and biomimetic assemblies
journal, February 1995


Canonical sampling through velocity rescaling
journal, January 2007

  • Bussi, Giovanni; Donadio, Davide; Parrinello, Michele
  • The Journal of Chemical Physics, Vol. 126, Issue 1
  • DOI: 10.1063/1.2408420

GROMACS: A message-passing parallel molecular dynamics implementation
journal, September 1995

  • Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R.
  • Computer Physics Communications, Vol. 91, Issue 1-3
  • DOI: 10.1016/0010-4655(95)00042-E

Gas-phase molecular structure and energetics of anionic silicates
journal, September 2008

  • Gomes, José R. B.; Cordeiro, M. Natália D. S.; Jorge, Miguel
  • Geochimica et Cosmochimica Acta, Vol. 72, Issue 17
  • DOI: 10.1016/j.gca.2008.06.012

Monte Carlo simulation of model amphiphile‐oil–water systems
journal, September 1985

  • Larson, R. G.; Scriven, L. E.; Davis, H. T.
  • The Journal of Chemical Physics, Vol. 83, Issue 5
  • DOI: 10.1063/1.449286

GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation
journal, February 2008

  • Hess, Berk; Kutzner, Carsten; van der Spoel, David
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 3
  • DOI: 10.1021/ct700301q

Quiet high-resolution computer models of a plasma
journal, February 1974


Molecular dynamics with coupling to an external bath
journal, October 1984

  • Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.
  • The Journal of Chemical Physics, Vol. 81, Issue 8
  • DOI: 10.1063/1.448118

Alkaline Lyotropic Silicate−Surfactant Liquid Crystals
journal, April 1997

  • Firouzi, A.; Atef, F.; Oertli, A. G.
  • Journal of the American Chemical Society, Vol. 119, Issue 15
  • DOI: 10.1021/ja963007i

Coarse Grained Model for Semiquantitative Lipid Simulations
journal, January 2004

  • Marrink, Siewert J.; de Vries, Alex H.; Mark, Alan E.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 2
  • DOI: 10.1021/jp036508g

GROMACS: Fast, flexible, and free
journal, January 2005

  • Van Der Spoel, David; Lindahl, Erik; Hess, Berk
  • Journal of Computational Chemistry, Vol. 26, Issue 16
  • DOI: 10.1002/jcc.20291

GROMACS 3.0: a package for molecular simulation and trajectory analysis
journal, August 2001

  • Lindahl, Erik; Hess, Berk; van der Spoel, David
  • Journal of Molecular Modeling, Vol. 7, Issue 8
  • DOI: 10.1007/s008940100045

Polarizable Water Model for the Coarse-Grained MARTINI Force Field
journal, June 2010


Synthesis and Characterization of Templated Mesoporous Materials Using Molecular Simulation
journal, November 2001


Molecular Simulation of Silica/Surfactant Self-Assembly in the Synthesis of Periodic Mesoporous Silicas
journal, December 2007

  • Jorge, Miguel; Gomes, José R. B.; Cordeiro, M. Natália D. S.
  • Journal of the American Chemical Society, Vol. 129, Issue 50
  • DOI: 10.1021/ja075070l

Molecular Dynamics Simulation of the Early Stages of the Synthesis of Periodic Mesoporous Silica
journal, January 2009

  • Jorge, Miguel; Gomes, José R. B.; Cordeiro, M. Natália D. S.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 3
  • DOI: 10.1021/jp806686w

Coarse-Grained Molecular Dynamics Simulations of the Sphere to Rod Transition in Surfactant Micelles
journal, June 2011

  • Sangwai, Ashish V.; Sureshkumar, Radhakrishna
  • Langmuir, Vol. 27, Issue 11
  • DOI: 10.1021/la2006315

X-ray diffraction study of mesophases of cetyltrimethylammonium bromide in water, formamide, and glycerol
journal, October 1989

  • Auvray, X.; Petipas, C.; Anthore, R.
  • The Journal of Physical Chemistry, Vol. 93, Issue 21
  • DOI: 10.1021/j100358a040

MCM-41, MCM-48 and related mesoporous adsorbents: their synthesis and characterisation
journal, August 2001

  • Kumar, D.; Schumacher, K.; du Fresne von Hohenesche, C.
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 187-188
  • DOI: 10.1016/S0927-7757(01)00638-0

A new family of mesoporous molecular sieves prepared with liquid crystal templates
journal, December 1992

  • Beck, J. S.; Vartuli, J. C.; Roth, W. J.
  • Journal of the American Chemical Society, Vol. 114, Issue 27, p. 10834-10843
  • DOI: 10.1021/ja00053a020

Multiscale Model for the Templated Synthesis of Mesoporous Silica: The Essential Role of Silica Oligomers
journal, April 2016


The MARTINI Force Field:  Coarse Grained Model for Biomolecular Simulations
journal, July 2007

  • Marrink, Siewert J.; Risselada, H. Jelger; Yefimov, Serge
  • The Journal of Physical Chemistry B, Vol. 111, Issue 27
  • DOI: 10.1021/jp071097f

The discovery of mesoporous molecular sieves from the twenty year perspective
journal, January 2013

  • Kresge, Charles T.; Roth, Wieslaw J.
  • Chemical Society Reviews, Vol. 42, Issue 9
  • DOI: 10.1039/c3cs60016e

Monte Carlo Simulation of Self-Assembled Ordered Hybrid Materials
journal, June 2007

  • Patti, Alessandro; Mackie, Allan D.; Siperstein, Flor R.
  • Langmuir, Vol. 23, Issue 12
  • DOI: 10.1021/la063296g

PACKMOL: A package for building initial configurations for molecular dynamics simulations
journal, October 2009

  • Martínez, L.; Andrade, R.; Birgin, E. G.
  • Journal of Computational Chemistry, Vol. 30, Issue 13
  • DOI: 10.1002/jcc.21224

From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis
journal, October 1997

  • Corma, Avelino
  • Chemical Reviews, Vol. 97, Issue 6, p. 2373-2420
  • DOI: 10.1021/cr960406n

6 Non-conventional soft matter
journal, January 0001

  • Tschierske, Carsten
  • Annual Reports Section "C" (Physical Chemistry), Vol. 97, Issue 1
  • DOI: 10.1039/b101114f

Porous inorganic materials
journal, December 1996


Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures
journal, September 1993


Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process
journal, January 1997

  • Ryoo, Ryong; Jun, Shinae
  • The Journal of Physical Chemistry B, Vol. 101, Issue 3
  • DOI: 10.1021/jp962500d

The Structure of the Micellar Solutions of Some Amphiphilic Compounds in Pure Water as Determined by Absolute Small-Angle X-Ray Scattering Techniques
journal, December 1964

  • Reiss-Husson, F.; Luzzati, Vittorio
  • The Journal of Physical Chemistry, Vol. 68, Issue 12
  • DOI: 10.1021/j100794a011

The aqueous cetyl trimethylammonium bromide solutions
journal, April 1971


Kinetics of Formation of Micelle-Templated Silica Mesophases Monitored by Electron Paramagnetic Resonance
journal, May 1998

  • Galarneau, Anne; Renzo, Francesco Di; Fajula, François
  • Journal of Colloid and Interface Science, Vol. 201, Issue 2
  • DOI: 10.1006/jcis.1998.5413

Studies on mesoporous materials II. Synthesis mechanism of MCM-41
journal, December 1993


Phase Behavior of Model Surfactants in the Presence of Hybrid Particles
journal, November 2007

  • Patti, A.; Siperstein, F. R.; Mackie, A. D.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 43
  • DOI: 10.1021/jp074486i

Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism
journal, October 1992

  • Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.
  • Nature, Vol. 359, Issue 6397, p. 710-712
  • DOI: 10.1038/359710a0