skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma

Abstract

Magnetic fields are ubiquitous in the Universe. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations. However, experimental demonstration of the turbulent dynamo mechanism has remained elusive, since it requires plasma conditions that are extremely hard to re-create in terrestrial laboratories. Here in this paper, we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization.

Authors:
 [1]; ORCiD logo [2];  [2];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [5];  [11];  [12];  [13];  [2];  [13];  [7];  [7] more »;  [7]; ORCiD logo [14];  [7];  [2]; ORCiD logo [15];  [16];  [2];  [5];  [11]; ORCiD logo [1] « less
  1. Univ. of Oxford (United Kingdom). Dept. of Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics
  2. Univ. of Oxford (United Kingdom). Dept. of Physics
  3. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL); Univ. of Strathclyde, Glasgow (United Kingdom). Dept. of Physics
  4. Alternative Energies and Atomic Energy Commission (CEA), Arpajon (France). Dept. of the Military Applications (DAM)
  5. Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics
  6. Max Planck Inst. for Astrophysics, Garching (Germany)
  7. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  8. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  9. Univ. of Wisconsin, Madison, WI (United States). Physics Dept.
  10. AWE, Aldermaston, Reading, West Berkshire (United Kingdom)
  11. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  12. Ecole Polytechnique, Palaiseau (France). Laboratoire pour l'Utilisation des Lasers Intenses (LULI)
  13. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  14. Ulsan National Inst. of Science and Technology (UNIST), Ulsan (Korea). Dept. of Physics
  15. Queens Univ., Belfast (United Kingdom). School of Mathematics and Physics
  16. Federal Inst. of Technology, Zurich (Switzerland). Dept. of Physics
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Chicago, IL (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); European Union (EU); National Science Foundation (NSF)
OSTI Identifier:
1423569
Alternate Identifier(s):
OSTI ID: 1495709; OSTI ID: 1769147
Report Number(s):
LLNL-JRNL-740393
Journal ID: ISSN 2041-1723; PII: 2953; TRN: US1801813
Grant/Contract Number:  
AC02-76SF00515; B591485; NA0002724; SC0016566; NA0001944; NA0003539; PHY-1619573; AC02-06CH11357; EP/M022331/1; EP/N014472/1; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Interstellar medium; Laser-produced plasmas; Lasers

Citation Formats

Tzeferacos, P., Rigby, A., Bott, A. F. A., Bell, A. R., Bingham, R., Casner, A., Cattaneo, F., Churazov, E. M., Emig, J., Fiuza, F., Forest, C. B., Foster, J., Graziani, C., Katz, J., Koenig, M., Li, C. -K., Meinecke, J., Petrasso, R., Park, H. -S., Remington, B. A., Ross, J. S., Ryu, D., Ryutov, D., White, T. G., Reville, B., Miniati, F., Schekochihin, A. A., Lamb, D. Q., Froula, D. H., and Gregori, G. Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma. United States: N. p., 2018. Web. https://doi.org/10.1038/s41467-018-02953-2.
Tzeferacos, P., Rigby, A., Bott, A. F. A., Bell, A. R., Bingham, R., Casner, A., Cattaneo, F., Churazov, E. M., Emig, J., Fiuza, F., Forest, C. B., Foster, J., Graziani, C., Katz, J., Koenig, M., Li, C. -K., Meinecke, J., Petrasso, R., Park, H. -S., Remington, B. A., Ross, J. S., Ryu, D., Ryutov, D., White, T. G., Reville, B., Miniati, F., Schekochihin, A. A., Lamb, D. Q., Froula, D. H., & Gregori, G. Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma. United States. https://doi.org/10.1038/s41467-018-02953-2
Tzeferacos, P., Rigby, A., Bott, A. F. A., Bell, A. R., Bingham, R., Casner, A., Cattaneo, F., Churazov, E. M., Emig, J., Fiuza, F., Forest, C. B., Foster, J., Graziani, C., Katz, J., Koenig, M., Li, C. -K., Meinecke, J., Petrasso, R., Park, H. -S., Remington, B. A., Ross, J. S., Ryu, D., Ryutov, D., White, T. G., Reville, B., Miniati, F., Schekochihin, A. A., Lamb, D. Q., Froula, D. H., and Gregori, G. Fri . "Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma". United States. https://doi.org/10.1038/s41467-018-02953-2. https://www.osti.gov/servlets/purl/1423569.
@article{osti_1423569,
title = {Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma},
author = {Tzeferacos, P. and Rigby, A. and Bott, A. F. A. and Bell, A. R. and Bingham, R. and Casner, A. and Cattaneo, F. and Churazov, E. M. and Emig, J. and Fiuza, F. and Forest, C. B. and Foster, J. and Graziani, C. and Katz, J. and Koenig, M. and Li, C. -K. and Meinecke, J. and Petrasso, R. and Park, H. -S. and Remington, B. A. and Ross, J. S. and Ryu, D. and Ryutov, D. and White, T. G. and Reville, B. and Miniati, F. and Schekochihin, A. A. and Lamb, D. Q. and Froula, D. H. and Gregori, G.},
abstractNote = {Magnetic fields are ubiquitous in the Universe. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations. However, experimental demonstration of the turbulent dynamo mechanism has remained elusive, since it requires plasma conditions that are extremely hard to re-create in terrestrial laboratories. Here in this paper, we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization.},
doi = {10.1038/s41467-018-02953-2},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code
journal, October 2009


FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes
journal, November 2000

  • Fryxell, B.; Olson, K.; Ricker, P.
  • The Astrophysical Journal Supplement Series, Vol. 131, Issue 1
  • DOI: 10.1086/317361

Universal Nonlinear Small-Scale Dynamo
journal, January 2012


Magnetic Field Saturation in the Riga Dynamo Experiment
journal, April 2001


Initial performance results of the OMEGA laser system
journal, January 1997


Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers
journal, August 2007


Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves
journal, January 2012

  • Gregori, G.; Ravasio, A.; Murphy, C. D.
  • Nature, Vol. 481, Issue 7382
  • DOI: 10.1038/nature10747

Helical and Nonhelical Turbulent Dynamos
journal, October 1981


Turbulence, magnetic fields, and plasma physics in clusters of galaxies
journal, May 2006

  • Schekochihin, A. A.; Cowley, S. C.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2179053

Cosmic Radiation and Cosmic Magnetic Fields. II. Origin of Cosmic Magnetic Fields
journal, June 1951


Important plasma problems in astrophysics
journal, May 1995


Self-similar energetics in large clusters of galaxies
journal, July 2015


Turbulence and Magnetic Fields in the Large-Scale Structure of the Universe
journal, May 2008


Turbulent amplification of magnetic fields in laboratory laser-produced shock waves
journal, June 2014

  • Meinecke, J.; Doyle, H. W.; Miniati, F.
  • Nature Physics, Vol. 10, Issue 7
  • DOI: 10.1038/nphys2978

Simulations of nonhelical hydromagnetic turbulence
journal, July 2004


Evolving turbulence and magnetic fields in galaxy clusters
journal, March 2006


Theory of the hydromagnetic generator
journal, January 1975

  • Ponomarenko, Yu. B.
  • Journal of Applied Mechanics and Technical Physics, Vol. 14, Issue 6
  • DOI: 10.1007/BF00853190

Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo
journal, April 2017

  • Tzeferacos, P.; Rigby, A.; Bott, A.
  • Physics of Plasmas, Vol. 24, Issue 4
  • DOI: 10.1063/1.4978628

An X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR1806 − 20
journal, May 1998

  • Kouveliotou, C.; Dieters, S.; Strohmayer, T.
  • Nature, Vol. 393, Issue 6682
  • DOI: 10.1038/30410

Effective Ampère force in developed magnetohydrodynamic turbulence
journal, October 1994


Developed turbulence and nonlinear amplification of magnetic fields in laboratory and astrophysical plasmas
journal, June 2015

  • Meinecke, Jena; Tzeferacos, Petros; Bell, Anthony
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 27
  • DOI: 10.1073/pnas.1502079112

Turbulence in clusters of galaxies and X-ray line profiles
journal, December 2003

  • Inogamov, N. A.; Sunyaev, R. A.
  • Astronomy Letters, Vol. 29, Issue 12
  • DOI: 10.1134/1.1631412

Proton imaging of stochastic magnetic fields
journal, December 2017


Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium
journal, January 2007


Detection of a Flow Induced Magnetic Field Eigenmode in the Riga Dynamo Facility
journal, May 2000


The Relation Between gas Density and Velocity Power Spectra in Galaxy Clusters: Qualitative Treatment and Cosmological Simulations
journal, May 2014


Simulations of the Small‐Scale Turbulent Dynamo
journal, September 2004

  • Schekochihin, Alexander A.; Cowley, Steven C.; Taylor, Samuel F.
  • The Astrophysical Journal, Vol. 612, Issue 1
  • DOI: 10.1086/422547

FLASH MHD simulations of experiments that study shock-generated magnetic fields
journal, December 2015


The Protogalactic Origin for Cosmic Magnetic Fields
journal, May 1997

  • Kulsrud, Russell M.; Cen, Renyue; Ostriker, Jeremiah P.
  • The Astrophysical Journal, Vol. 480, Issue 2
  • DOI: 10.1086/303987

Spectrum of the galactic magnetic fields
journal, March 1982

  • Ruzmaikin, A. A.; Shukurov, A. M.
  • Astrophysics and Space Science, Vol. 82, Issue 2
  • DOI: 10.1007/BF00651446

Invited Article: Relation between electric and magnetic field structures and their proton-beam images
journal, October 2012

  • Kugland, N. L.; Ryutov, D. D.; Plechaty, C.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4750234

Laser light scattering in laboratory plasmas
journal, January 1969


Spontaneous Magnetic Fields in Laser-Produced Plasmas
journal, April 1971


Inferring morphology and strength of magnetic fields from proton radiographs
journal, December 2017

  • Graziani, Carlo; Tzeferacos, Petros; Lamb, Donald Q.
  • Review of Scientific Instruments, Vol. 88, Issue 12
  • DOI: 10.1063/1.5013029

Cluster Magnetic Fields
journal, September 2002


Magnetic fields in galaxies and beyond
journal, January 1997

  • Zweibel, Ellen G.; Heiles, Carl
  • Nature, Vol. 385, Issue 6612
  • DOI: 10.1038/385131a0

Hydromagnetic Dynamo Models.
journal, July 1955

  • Parker, Eugene N.
  • The Astrophysical Journal, Vol. 122
  • DOI: 10.1086/146087

Current Status of Turbulent Dynamo Theory: From Large-Scale to Small-Scale Dynamos
journal, July 2012

  • Brandenburg, Axel; Sokoloff, Dmitry; Subramanian, Kandaswamy
  • Space Science Reviews, Vol. 169, Issue 1-4
  • DOI: 10.1007/s11214-012-9909-x

Astrophysical Hydromagnetic Turbulence
journal, August 2013


    Works referencing / citing this record:

    Retrieving fields from proton radiography without source profiles
    journal, September 2019


    Self-driven current generation in turbulent fusion plasmas
    journal, June 2019


    3D Simulations and MLT. I. Renzini’s Critique
    journal, August 2019

    • Arnett, W. David; Meakin, Casey; Hirschi, Raphael
    • The Astrophysical Journal, Vol. 882, Issue 1
    • DOI: 10.3847/1538-4357/ab21d9

    Magnetohydrodynamical Effects on Nuclear Deflagration Fronts in Type Ia Supernovae
    journal, April 2018

    • Hristov, Boyan; Collins, David C.; Hoeflich, Peter
    • The Astrophysical Journal, Vol. 858, Issue 1
    • DOI: 10.3847/1538-4357/aab7f2

    Proton imaging of stochastic magnetic fields
    journal, December 2017


    Analytical estimates of proton acceleration in laser-produced turbulent plasmas
    journal, November 2018

    • Beyer, Konstantin A.; Reville, Brian; Bott, Archie F. A.
    • Journal of Plasma Physics, Vol. 84, Issue 6
    • DOI: 10.1017/s0022377818001149

    Asymmetric and endogenous magnetic reconnection processes in quasi-collisionless plasmas
    journal, April 2019


    Long-duration direct drive hydrodynamics experiments on the National Ignition Facility: Platform development and numerical modeling with CHIC
    journal, August 2019

    • Mailliet, C.; Le Bel, E.; Ceurvorst, L.
    • Physics of Plasmas, Vol. 26, Issue 8
    • DOI: 10.1063/1.5110684

    Numerical simulation of magnetized jet creation using a hollow ring of laser beams
    journal, February 2019

    • Lu, Y.; Tzeferacos, P.; Liang, E.
    • Physics of Plasmas, Vol. 26, Issue 2
    • DOI: 10.1063/1.5050924

    Characterizing filamentary magnetic structures in counter-streaming plasmas by Fourier analysis of proton images
    journal, October 2019

    • Levesque, Joseph; Kuranz, Carolyn; Handy, Timothy
    • Physics of Plasmas, Vol. 26, Issue 10
    • DOI: 10.1063/1.5100728

    Modeling hydrodynamics, magnetic fields, and synthetic radiographs for high-energy-density plasma flows in shock-shear targets
    journal, January 2020

    • Lu, Yingchao; Li, Shengtai; Li, Hui
    • Physics of Plasmas, Vol. 27, Issue 1
    • DOI: 10.1063/1.5126149

    MPRAD: A Monte Carlo and ray-tracing code for the proton radiography in high-energy-density plasma experiments
    journal, December 2019

    • Lu, Yingchao; Li, Hui; Flippo, Kirk A.
    • Review of Scientific Instruments, Vol. 90, Issue 12
    • DOI: 10.1063/1.5123392

    Dynamo theories
    journal, August 2019


    Design of a new turbulent dynamo experiment on the OMEGA-EP
    journal, March 2019

    • Liao, Andy Sha; Li, Shengtai; Li, Hui
    • Physics of Plasmas, Vol. 26, Issue 3
    • DOI: 10.1063/1.5081062

    From ICF to laboratory astrophysics: ablative and classical Rayleigh–Taylor instability experiments in turbulent-like regimes
    journal, December 2018


    Dynamo theories
    journal, August 2019