skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effectively infinite optical path-length created using a simple cubic photonic crystal for extreme light trapping

Abstract

A 900 nm thick TiO2 simple cubic photonic crystal with lattice constant 450 nm was fabricated and used to experimentally validate a newly-discovered mechanism for extreme light-bending. Absorption enhancement was observed extending 1–2 orders of magnitude over that of a reference TiO2 film. Several enhancement peaks in the region from 600–950 nm were identified, which far exceed both the ergodic fundamental limit and the limit based on surface-gratings, with some peaks exceeding 100 times enhancement. These results are attributed to radically sharp refraction where the optical path length approaches infinity due to the Poynting vector lying nearly parallel to the photonic crystal interface. The observed phenomena follow directly from the simple cubic symmetry of the photonic crystal, and can be achieved by integrating the light-trapping architecture into the absorbing volume. These results are not dependent on the material used, and can be applied to any future light trapping applications such as phosphor-converted white light generation, water-splitting, or thin-film solar cells, where increased response in areas of weak absorption is desired.

Authors:
 [1];  [1];  [2];  [3];  [4];  [1]
  1. Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Physics
  2. National Chiao-Tung Univ., Hsinchu City (Taiwan). Dept. of Photonics
  3. Soochow Univ., Suzhou (China). School of Physical Science and Technology
  4. Univ. of Toronto, ON (Canada). Dept. of Physics
Publication Date:
Research Org.:
Rensselaer Polytechnic Inst., Troy, NY (United States); National Chiao-Tung Univ., Hsinchu City (Taiwan)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF); New York State (United States); Ministry of Science and Technology (MOST) (Taiwan)
OSTI Identifier:
1423558
Alternate Identifier(s):
OSTI ID: 1430187
Grant/Contract Number:  
FG02-06ER46347; EEC-0812056; ECCS-1542081; C140145; MOST 104-2221-E-009-172
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; nanophotonics and plasmonics; photonic crystals; sub-wavelength optics

Citation Formats

Frey, Brian J., Kuang, Ping, Hsieh, Mei-Li, Jiang, Jian-Hua, John, Sajeev, and Lin, Shawn-Yu. Effectively infinite optical path-length created using a simple cubic photonic crystal for extreme light trapping. United States: N. p., 2017. Web. doi:10.1038/s41598-017-03800-y.
Frey, Brian J., Kuang, Ping, Hsieh, Mei-Li, Jiang, Jian-Hua, John, Sajeev, & Lin, Shawn-Yu. Effectively infinite optical path-length created using a simple cubic photonic crystal for extreme light trapping. United States. doi:10.1038/s41598-017-03800-y.
Frey, Brian J., Kuang, Ping, Hsieh, Mei-Li, Jiang, Jian-Hua, John, Sajeev, and Lin, Shawn-Yu. Fri . "Effectively infinite optical path-length created using a simple cubic photonic crystal for extreme light trapping". United States. doi:10.1038/s41598-017-03800-y. https://www.osti.gov/servlets/purl/1423558.
@article{osti_1423558,
title = {Effectively infinite optical path-length created using a simple cubic photonic crystal for extreme light trapping},
author = {Frey, Brian J. and Kuang, Ping and Hsieh, Mei-Li and Jiang, Jian-Hua and John, Sajeev and Lin, Shawn-Yu},
abstractNote = {A 900 nm thick TiO2 simple cubic photonic crystal with lattice constant 450 nm was fabricated and used to experimentally validate a newly-discovered mechanism for extreme light-bending. Absorption enhancement was observed extending 1–2 orders of magnitude over that of a reference TiO2 film. Several enhancement peaks in the region from 600–950 nm were identified, which far exceed both the ergodic fundamental limit and the limit based on surface-gratings, with some peaks exceeding 100 times enhancement. These results are attributed to radically sharp refraction where the optical path length approaches infinity due to the Poynting vector lying nearly parallel to the photonic crystal interface. The observed phenomena follow directly from the simple cubic symmetry of the photonic crystal, and can be achieved by integrating the light-trapping architecture into the absorbing volume. These results are not dependent on the material used, and can be applied to any future light trapping applications such as phosphor-converted white light generation, water-splitting, or thin-film solar cells, where increased response in areas of weak absorption is desired.},
doi = {10.1038/s41598-017-03800-y},
journal = {Scientific Reports},
number = 1,
volume = 7,
place = {United States},
year = {2017},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids
journal, December 1953


Thickness dependence of microcrystalline silicon solar cell properties
journal, February 2001


High-efficiency photonic crystal solar cell architecture
journal, January 2009

  • Chutinan, Alongkarn; Kherani, Nazir P.; Zukotynski, Stefan
  • Optics Express, Vol. 17, Issue 11
  • DOI: 10.1364/OE.17.008871

Light trapping and absorption optimization in certain thin-film photonic crystal architectures
journal, August 2008


Large-scale fabrication of a simple cubic metal-oxide photonic crystal for light-trapping applications
journal, March 2015

  • Frey, Brian J.; Kuang, Ping; Lin, Shawn-Yu
  • Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 33, Issue 2
  • DOI: 10.1116/1.4913873

Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode
journal, January 2014

  • Leung, V. Y. F.; Lagendijk, A.; Tukker, T. W.
  • Optics Express, Vol. 22, Issue 7
  • DOI: 10.1364/OE.22.008190

Resonant light trapping in ultrathin films for water splitting
journal, November 2012

  • Dotan, Hen; Kfir, Ofer; Sharlin, Elad
  • Nature Materials, Vol. 12, Issue 2
  • DOI: 10.1038/nmat3477

TCO and light trapping in silicon thin film solar cells
journal, December 2004


Enhancement of dye sensitized solar cell efficiency via incorporation of upconverting phosphor nanoparticles as spectral converters: Enhancement of dye sensitized solar cell efficiency
journal, December 2015

  • Chander, Nikhil; Khan, Atif F.; Komarala, Vamsi K.
  • Progress in Photovoltaics: Research and Applications, Vol. 24, Issue 5
  • DOI: 10.1002/pip.2723

Solar Cell Light Trapping beyond the Ray Optic Limit
journal, December 2011

  • Callahan, Dennis M.; Munday, Jeremy N.; Atwater, Harry A.
  • Nano Letters, Vol. 12, Issue 1
  • DOI: 10.1021/nl203351k

The renaissance of dye-sensitized solar cells
journal, February 2012

  • Hardin, Brian E.; Snaith, Henry J.; McGehee, Michael D.
  • Nature Photonics, Vol. 6, Issue 3
  • DOI: 10.1038/nphoton.2012.22

15.7% Efficient 10-μm-Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures
journal, February 2015

  • Branham, Matthew S.; Hsu, Wei-Chun; Yerci, Selcuk
  • Advanced Materials, Vol. 27, Issue 13
  • DOI: 10.1002/adma.201405511

Light-trapping in dye-sensitized solar cells
journal, January 2013

  • Foster, Stephen; John, Sajeev
  • Energy & Environmental Science, Vol. 6, Issue 10
  • DOI: 10.1039/c3ee40185e

Thin-film silicon solar cell technology
journal, March 2004

  • Shah, A. V.; Schade, H.; Vanecek, M.
  • Progress in Photovoltaics: Research and Applications, Vol. 12, Issue 23
  • DOI: 10.1002/pip.533

Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications
journal, May 2012

  • Mavrokefalos, Anastassios; Han, Sang Eon; Yerci, Selcuk
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl2045777

Three-dimensional control of light in a two-dimensional photonic crystal slab
journal, October 2000

  • Chow, Edmond; Lin, S. Y.; Johnson, S. G.
  • Nature, Vol. 407, Issue 6807, p. 983-986
  • DOI: 10.1038/35039583

Multiple‐pass thin‐film silicon solar cell
journal, December 1974


A low cost, low energy route to solar grade silicon from rice hull ash (RHA), a sustainable source
journal, January 2015

  • Marchal, Julien C.; Krug III, David J.; McDonnell, Patrick
  • Green Chemistry, Vol. 17, Issue 7
  • DOI: 10.1039/C5GC00622H

Transparent polymer solar cells employing a layered light-trapping architecture
journal, October 2013

  • Betancur, Rafael; Romero-Gomez, Pablo; Martinez-Otero, Alberto
  • Nature Photonics, Vol. 7, Issue 12
  • DOI: 10.1038/nphoton.2013.276

Nanowire dye-sensitized solar cells
journal, May 2005

  • Law, Matt; Greene, Lori E.; Johnson, Justin C.
  • Nature Materials, Vol. 4, Issue 6, p. 455-459
  • DOI: 10.1038/nmat1387

Light trapping and near-unity solar absorption in a three-dimensional photonic-crystal
journal, January 2013

  • Kuang, Ping; Deinega, Alexei; Hsieh, Mei-Li
  • Optics Letters, Vol. 38, Issue 20
  • DOI: 10.1364/OL.38.004200

Complete three-dimensional photonic bandgap in a simple cubic structure
journal, January 2001

  • Lin, Shawn-Yu; Fleming, J. G.; Lin, Robin
  • Journal of the Optical Society of America B, Vol. 18, Issue 1
  • DOI: 10.1364/JOSAB.18.000032

Solar energy trapping with modulated silicon nanowire photonic crystals
journal, October 2012

  • Demésy, Guillaume; John, Sajeev
  • Journal of Applied Physics, Vol. 112, Issue 7
  • DOI: 10.1063/1.4752775

Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture
journal, April 2011

  • Haug, F. -J.; Söderström, K.; Naqavi, A.
  • Journal of Applied Physics, Vol. 109, Issue 8
  • DOI: 10.1063/1.3569689

A three-dimensional photonic crystal operating at infrared wavelengths
journal, July 1998

  • Lin, S. Y.; Fleming, J. G.; Hetherington, D. L.
  • Nature, Vol. 394, Issue 6690, p. 251-253
  • DOI: 10.1038/28343

Statistical ray optics
journal, July 1982

  • Yablonovitch, Eli
  • Journal of the Optical Society of America, Vol. 72, Issue 7, p. 899-907
  • DOI: 10.1364/JOSA.72.000899

Fundamental limit of light trapping in grating 
structures
journal, January 2010

  • Yu, Zongfu; Raman, Aaswath; Fan, Shanhui
  • Optics Express, Vol. 18, Issue S3
  • DOI: 10.1364/OE.18.00A366

Efficiency enhancement in Si solar cells by textured photonic crystal back reflector
journal, September 2006

  • Zeng, L.; Yi, Y.; Hong, C.
  • Applied Physics Letters, Vol. 89, Issue 11
  • DOI: 10.1063/1.2349845

Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells
journal, June 2015

  • van Lare, Claire; Lenzmann, Frank; Verschuuren, Marc A.
  • Nano Letters, Vol. 15, Issue 8, p. 4846-4852
  • DOI: 10.1021/nl5045583

Amorphous silicon solar cell
journal, June 1976

  • Carlson, D. E.; Wronski, C. R.
  • Applied Physics Letters, Vol. 28, Issue 11
  • DOI: 10.1063/1.88617

Photovoltaic Technology: The Case for Thin-Film Solar Cells
journal, July 1999