DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

Abstract

The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at similar to 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Near the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Finally, further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.

Authors:
 [1];  [1];  [2];  [3];  [3];  [4]
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States). Dept. of Applied Physics
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1423522
Alternate Identifier(s):
OSTI ID: 1421297; OSTI ID: 1426199
Grant/Contract Number:  
AC02-76SF00515; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 97; Journal Issue: 5; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Rotundu, Costel R., Wen, Jiajia, He, Wei, Choi, Yongseong, Haskel, Daniel, and Lee, Young S. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure. United States: N. p., 2018. Web. doi:10.1103/physrevb.97.054415.
Rotundu, Costel R., Wen, Jiajia, He, Wei, Choi, Yongseong, Haskel, Daniel, & Lee, Young S. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure. United States. https://doi.org/10.1103/physrevb.97.054415
Rotundu, Costel R., Wen, Jiajia, He, Wei, Choi, Yongseong, Haskel, Daniel, and Lee, Young S. Thu . "Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure". United States. https://doi.org/10.1103/physrevb.97.054415. https://www.osti.gov/servlets/purl/1423522.
@article{osti_1423522,
title = {Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure},
author = {Rotundu, Costel R. and Wen, Jiajia and He, Wei and Choi, Yongseong and Haskel, Daniel and Lee, Young S.},
abstractNote = {The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at similar to 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Near the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Finally, further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.},
doi = {10.1103/physrevb.97.054415},
journal = {Physical Review B},
number = 5,
volume = 97,
place = {United States},
year = {Thu Feb 15 00:00:00 EST 2018},
month = {Thu Feb 15 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Structure of TiOCl. (a) Crystal structure of TiOCl. (b) Representation of the commensurate dimer singlet state at T < Tc1 (the spin-Peierls state). (c) Scans along K through the commensurate (0,1.5,0) and (0,2.5,0) peak positions showing the peak intensity normalized to the nearest Bragg peak (0,2,0). For clarity,more » the superlattice peaks were magnified by a factor of 50 and 200, respectively.« less

Save / Share:

Works referenced in this record:

Infrared optical properties of the spin- 1 2 quantum magnet TiOCl
journal, March 2004


Ordering phenomena in quasi-one-dimensional organic conductors
journal, May 2007


S = 1 2 chains and spin-Peierls transition in TiOCl
journal, January 2003


Two pressure-induced structural phase transitions in TiOCl
journal, October 2010


Evaluations of pressure-transmitting media for cryogenic experiments with diamond anvil cell
journal, December 2009

  • Tateiwa, Naoyuki; Haga, Yoshinori
  • Review of Scientific Instruments, Vol. 80, Issue 12
  • DOI: 10.1063/1.3265992

Commensurate fluctuations in the pseudogap and incommensurate spin-Peierls phases of TiOCl
journal, March 2007


Structure of the incommensurate phase of the quantum magnet TiOCl
journal, June 2006

  • Schönleber, Andreas; van Smaalen, Sander; Palatinus, Lukáš
  • Physical Review B, Vol. 73, Issue 21
  • DOI: 10.1103/PhysRevB.73.214410

Incommensurate structure of the spin-Peierls compound TiOCl in zero and finite magnetic fields
journal, May 2006


The Physics of Organic Superconductors
journal, June 1991


Magnetic susceptibility in the spin-Peierls system CuGeO 3
journal, June 1995


An x-ray topographic study of diamond anvils: Correlation between defects and helium diffusion
journal, May 2006

  • Dewaele, Agnès; Loubeyre, Paul; André, Ramesh
  • Journal of Applied Physics, Vol. 99, Issue 10
  • DOI: 10.1063/1.2197265

Observation of the spin-Peierls transition in linear Cu 2 + (spin-1/2) chains in an inorganic compound CuGeO 3
journal, June 1993


Enhanced Dimerization of TiOCl under Pressure: Spin-Peierls to Peierls Transition
journal, February 2009


Can the Mott Insulator TiOCl be Metallized by Doping? A First-Principles Study
journal, April 2010


�ber Titanchloride. V. Titan(III)-oxychlorid
journal, June 1958

  • Sch�fer, Harald; Wartenpfuhl, Friedel; Weise, Eberhard
  • Zeitschrift f�r anorganische und allgemeine Chemie, Vol. 295, Issue 3-4
  • DOI: 10.1002/zaac.19582950314

Possible metallization of the Mott insulators TiOCl and TiOBr: Effects of doping and external pressure
journal, December 2009

  • Kuntscher, C. A.; Klemm, M.; Horn, S.
  • The European Physical Journal Special Topics, Vol. 180, Issue 1
  • DOI: 10.1140/epjst/e2010-01210-7

Metallizing the Mott insulator TiOCl by electron doping
journal, November 2006

  • Craco, L.; Laad, M. S.; Müller-Hartmann, E.
  • Journal of Physics: Condensed Matter, Vol. 18, Issue 48
  • DOI: 10.1088/0953-8984/18/48/021

From spin-Peierls to superconductivity: (TMTTF) 2 PF 6 under high pressure
journal, January 2001


Peierls instability in Heisenberg chains
journal, December 1974


Spin-Peierls transitions in magnetic donor-acceptor compounds of tetrathiafulvalene (TTF) with bisdithiolene metal complexes
journal, October 1976


Zero-Field Incommensurate Spin-Peierls Phase with Interchain Frustration in TiOCl
journal, August 2005


Resonating valence bonds: A new kind of insulator?
journal, February 1973


X-ray scattering study of the spin-Peierls transition and soft phonon behavior in TiOCl
journal, December 2007


Effects of Uniaxial Strain on Transport Properties of Organic Conductor α-(BEDT-TTF) 2 I 3 and Discovery of Superconductivity
journal, August 2002

  • Tajima, Naoya; Ebina-Tajima, Akiko; Tamura, Masafumi
  • Journal of the Physical Society of Japan, Vol. 71, Issue 8
  • DOI: 10.1143/JPSJ.71.1832

Spin-Peierls transition in TiOCl
journal, March 2005


Invited Article: High-pressure techniques for condensed matter physics at low temperature
journal, April 2010

  • Feng, Yejun; Jaramillo, R.; Wang, Jiyang
  • Review of Scientific Instruments, Vol. 81, Issue 4
  • DOI: 10.1063/1.3400212

Orbital order in the low-dimensional quantum spin system TiOCl probed by ESR
journal, October 2003


Superconducting Transition of (TMTTF) 2 PF 6 above 50 kbar [TMTTF = Tetramethyltetrathiafulvalene]
journal, April 2000

  • Adachi, Takafumi; Ojima, Emiko; Kato, Kiyonori
  • Journal of the American Chemical Society, Vol. 122, Issue 13
  • DOI: 10.1021/ja0001254

Effect of covalent bonding on magnetism and the missing neutron intensity in copper oxide compounds
journal, October 2009

  • Walters, Andrew C.; Perring, Toby G.; Caux, Jean-Sébastien
  • Nature Physics, Vol. 5, Issue 12
  • DOI: 10.1038/nphys1405

Electron-lattice coupling and broken symmetries of the molecular salt ( TMTTF ) 2 SbF 6
journal, September 2004


Pressure-induced metallization and structural phase transition of the Mott-Hubbard insulator TiOBr
journal, December 2007


Giant phonon softening in the pseudogap phase of the quantum spin system TiOCl
journal, October 2004


Possible pressure-induced insulator-to-metal transition in low-dimensional TiOCl
journal, November 2006


Spin-Peierls transition in N-methyl-N-ethyl-morpholinium-ditetracyanoquinodimethanide [MEM- ( TCNQ ) 2 ]
journal, May 1979


Mott-Hubbard gap closure and structural phase transition in the oxyhalides TiOBr and TiOCl under pressure
journal, July 2008


Effect of pressure on the electrical transport and structure of TiOCl
journal, April 2008


Observation of a Spin-Peierls Transition in a Heisenberg Antiferromagnetic Linear-Chain System
journal, September 1975


Heat capacity of the quantum magnet TiOCl
journal, July 2005


Pressure-induced spin-Peierls to incommensurate charge-density-wave transition in the ground state of TiOCl
journal, May 2010


Works referencing / citing this record:

The role of magnetic order in VOCl
journal, May 2019

  • Ekholm, M.; Schönleber, A.; van Smaalen, S.
  • Journal of Physics: Condensed Matter, Vol. 31, Issue 32
  • DOI: 10.1088/1361-648x/ab1eff

The role of magnetic order in VOCl
text, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.