skip to main content


This content will become publicly available on April 1, 2019

Title: Copper-polydopamine composite derived from bioinspired polymer coating

Metal matrix composites with nanocarbon phases, such carbon nanotube (CNT) and graphene, have shown potentials to achieve improved mechanical, thermal, and electrical properties. However, incorporation of these nanocarbons into the metal matrix usually involves complicated processes. Here, this study explored a new processing method to fabricate copper (Cu) matrix composite by coating Cu powder particles with nanometer-thick polydopamine (PDA) thin films and sintering of the powder compacts. For sintering temperatures between 300°C and 750°C, the Cu-PDA composite samples showed higher electrical conductivity and thermal conductivity than the uncoated Cu samples, which is likely related to the higher mass densities of the composite samples. After being sintered at 950°C, the thermal conductivity of the Cu-PDA sample was approximately 12% higher than the Cu sample, while the electrical conductivity did not show significant difference. On the other hand, Knoop micro-hardness values were comparable between the Cu-PDA and Cu samples sintered at the same temperatures.
 [1] ;  [2] ;  [1] ;  [1] ; ORCiD logo [1]
  1. Temple Univ., Philadelphia, PA (United States). Dept. of Mechanical Engineering
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Alloys and Compounds
Additional Journal Information:
Journal Volume: 742; Journal Issue: C; Journal ID: ISSN 0925-8388
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; Metal matrix composite; Nanocarbon; Polydopamine; Electrical conductivity; Thermal conductivity
OSTI Identifier: