Heterogeneity in nitrogen sources enhances productivity and nutrient use efficiency in algal polycultures
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division
- Univ. of California, San Diego, CA (United States)
Algae hold much promise as a potential feedstock for biofuels and other products, but scaling up biomass production remains challenging. Here, we hypothesized that multispecies assemblages, or polycultures, could improve crop yield when grown in media with mixed nitrogen sources, as found in wastewater. We grew mono- and poly- cultures of algae in four distinct growth media that differed in the form (i.e. nitrate, ammonium, urea, plus a mixture of all three), but not the concentration of nitrogen. We found that mean biomass productivity was positively correlated with algal species richness, and that this relationship was strongest in mixed nitrogen media (on average 88% greater biomass production in 5-species polycultures than in monocultures in mixed nitrogen treatment). We also found that the relationship between nutrient use efficiency and species richness was positive across nitrogen treatments, but greatest in mixed nitrogen media. While polycultures outperformed the most productive monoculture only 0-14% of the time in this experiment, they outperformed the average monoculture 26-52% of the time. Our results suggest that algal polycultures have the potential to be highly productive, and can be effective in recycling nutrients and treating wastewater, offering a sustainable and cost-effective solution for biofuel production.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Bioenergy Technologies Office (BETO)
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1423104
- Journal Information:
- Environmental Science and Technology, Vol. 52, Issue 6; ISSN 0013-936X
- Publisher:
- American Chemical Society (ACS)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Development Of Nutrient And Water Recycling Capabilities In Algae Biofuels Production Systems. Final Summary Report
Nutrient Recycle from Algae Hydrothermal Liquefaction Aqueous Phase Through a Novel Selective Remediation Approach