skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on January 8, 2019

Title: Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111)

Electronic and thermal properties of chevron-type graphene nanoribbons can be widely tuned, making them interesting candidates for electronic and thermoelectric applications. In this paper, we use post-growth silicon intercalation to unambiguously access nanoribbons’ energy position of their electronic frontier states. These are otherwise obscured by substrate effects when investigated directly on the growth substrate. Finally, in agreement with first-principles calculations we find a band gap of 2.4 eV.
Authors:
ORCiD logo [1] ; ORCiD logo [1] ;  [1] ;  [2] ; ORCiD logo [3] ; ORCiD logo [2] ;  [4] ;  [5] ; ORCiD logo [6] ; ORCiD logo [1]
  1. Swiss Federal Lab. for Materials Science and Technology (Empa), Dubendorf (Switzerland)
  2. Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Physics, Applied Physics, and Astronomy
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences
  4. Technische Univ. Dresden (Germany). Chair of Molecular Functional Materials. Dept. of Chemistry and Food Chemistry
  5. Max Planck Inst. for Polymer Research, Mainz (Germany)
  6. Swiss Federal Lab. for Materials Science and Technology (Empa), Dubendorf (Switzerland); Univ. of Bern (Switzerland). Dept. of Chemistry and Biochemistry
Publication Date:
Grant/Contract Number:
AC05-00OR22725; N00014-12-1-1009; CNECT-ICT-604391; IJCI-2014-19291
Type:
Accepted Manuscript
Journal Name:
ChemComm
Additional Journal Information:
Journal Volume: 54; Journal Issue: 13; Journal ID: ISSN 1359-7345
Publisher:
Royal Society of Chemistry
Research Org:
Swiss Federal Lab. for Materials Science and Technology (Empa), Dubendorf (Switzerland); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE; Office of Naval Research (ONR) (United States); Swiss National Science Foundation (SNSF); European Commission (EC); Ministry of Economy, Industry and Competitiveness (Spain); European Investment Bank (EIB)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY
OSTI Identifier:
1423064

Deniz, O., Sánchez-Sánchez, C., Jaafar, R., Kharche, N., Liang, L., Meunier, V., Feng, X., Müllen, K., Fasel, R., and Ruffieux, P.. Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111). United States: N. p., Web. doi:10.1039/C7CC08353J.
Deniz, O., Sánchez-Sánchez, C., Jaafar, R., Kharche, N., Liang, L., Meunier, V., Feng, X., Müllen, K., Fasel, R., & Ruffieux, P.. Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111). United States. doi:10.1039/C7CC08353J.
Deniz, O., Sánchez-Sánchez, C., Jaafar, R., Kharche, N., Liang, L., Meunier, V., Feng, X., Müllen, K., Fasel, R., and Ruffieux, P.. 2018. "Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111)". United States. doi:10.1039/C7CC08353J.
@article{osti_1423064,
title = {Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111)},
author = {Deniz, O. and Sánchez-Sánchez, C. and Jaafar, R. and Kharche, N. and Liang, L. and Meunier, V. and Feng, X. and Müllen, K. and Fasel, R. and Ruffieux, P.},
abstractNote = {Electronic and thermal properties of chevron-type graphene nanoribbons can be widely tuned, making them interesting candidates for electronic and thermoelectric applications. In this paper, we use post-growth silicon intercalation to unambiguously access nanoribbons’ energy position of their electronic frontier states. These are otherwise obscured by substrate effects when investigated directly on the growth substrate. Finally, in agreement with first-principles calculations we find a band gap of 2.4 eV.},
doi = {10.1039/C7CC08353J},
journal = {ChemComm},
number = 13,
volume = 54,
place = {United States},
year = {2018},
month = {1}
}

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996
  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Projector augmented-wave method
journal, December 1994

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999

Graphene: Electronic and Photonic Properties and Devices
journal, November 2010
  • Avouris, Phaedon
  • Nano Letters, Vol. 10, Issue 11, p. 4285-4294
  • DOI: 10.1021/nl102824h

The rise of graphene
journal, March 2007
  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Two-dimensional gas of massless Dirac fermions in graphene
journal, November 2005
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.
  • Nature, Vol. 438, Issue 7065, p. 197-200
  • DOI: 10.1038/nature04233