skip to main content


This content will become publicly available on December 18, 2018

Title: Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization

We report that hybrid capacitive deionization (HCDI), which combines a capacitive carbon electrode and a redox active electrode in a single device, has emerged as a promising method for water desalination, enabling higher ion removal capacity than devices containing two carbon electrodes. However, to date, the desalination performance of few redox active materials has been reported. For the first time, we present the electrochemical behavior of manganese oxide nanowires with four different tunnel crystal structures as faradaic electrodes in HCDI cells. Two of these phases are square tunnel structured manganese oxides, α-MnO 2 and todorokite-MnO 2. The other two phases have novel structures that cross-sectional scanning transmission electron microscopy analysis revealed to have ordered and disordered combinations of structural tunnels with different dimensions. The ion removal performance of the nanowires was evaluated not only in NaCl solution, which is traditionally used in laboratory experiments, but also in KCl and MgCl 2 solutions, providing better understanding of the behavior of these materials for desalination of brackish water that contains multiple cation species. High ion removal capacities (as large as 27.8 mg g -1, 44.4 mg g -1, and 43.1 mg g -1 in NaCl, KCl, and MgCl 2 solutions, respectively) andmore » high ion removal rates (as large as 0.112 mg g -1 s -1, 0.165 mg g -1 s -1, and 0.164 mg g -1 s -1 in NaCl, KCl, and MgCl 2 solutions, respectively) were achieved. By comparing ion removal capacity to structural tunnel size, it was found that smaller tunnels do not favor the removal of cations with larger hydrated radii, and more efficient removal of larger hydrated cations can be achieved by utilizing manganese oxides with larger structural tunnels. Extended HCDI cycling and ex situ X-ray diffraction analysis revealed the excellent stability of the manganese oxide electrodes in repeated ion removal/ion release cycles, and compositional analysis of the electrodes indicated that ion removal is achieved through both surface redox reactions and intercalation of ions into the structural tunnels. In conclusion, this work contributes to the understanding of the behavior of faradaic materials in electrochemical water desalination and elucidates the relationship between the electrode material crystal structure and the ion removal capacity/ion removal rate in various salt solutions.« less
 [1] ; ORCiD logo [2] ; ORCiD logo [3] ;  [1]
  1. Drexel Univ., Philadelphia, PA (United States). Department of Materials Science and Engineering
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Nano Energy
Additional Journal Information:
Journal Volume: 44; Journal Issue: C; Journal ID: ISSN 2211-2855
Research Org:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; Hybrid capacitive deionization; Manganese oxides; Electrochemical water desalination; Tunnel crystal structures
OSTI Identifier: