DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal–Organic Frameworks

Abstract

During nuclear waste disposal process, radioactive iodine as a fission product can be released. The widespread implementation of sustainable nuclear energy thus requires the development of efficient iodine stores that have simultaneously high capacity, stability and more importantly, storage density (and hence minimized system volume). Here, we report high I2 adsorption in a series of robust porous metal–organic materials, MFM-300(M) (M = Al, Sc, Fe, In). MFM-300(Sc) exhibits fully reversible I2 uptake of 1.54 g g–1, and its structure remains completely unperturbed upon inclusion/removal of I2. Direct observation and quantification of the adsorption, binding domains and dynamics of guest I2 molecules within these hosts have been achieved using XPS, TGA-MS, high resolution synchrotron X-ray diffraction, pair distribution function analysis, Raman, terahertz and neutron spectroscopy, coupled with density functional theory modeling. These complementary techniques reveal a comprehensive understanding of the host–I2 and I2–I2 binding interactions at a molecular level. The initial binding site of I2 in MFM-300(Sc), I2I, is located near the bridging hydroxyl group of the [ScO4(OH)2] moiety [I2I···H–O = 2.263(9) Å] with an occupancy of 0.268. I2II is located interstitially between two phenyl rings of neighboring ligand molecules [I2II···phenyl ring = 3.378(9) and 4.228(5) Å]. I2II is 4.565(2) Åmore » from the hydroxyl group with an occupancy of 0.208. Significantly, at high I2 loading an unprecedented self-aggregation of I2 molecules into triple-helical chains within the confined nanovoids has been observed at crystallographic resolution, leading to a highly efficient packing of I2 molecules with an exceptional I2 storage density of 3.08 g cm–3 in MFM-300(Sc).« less

Authors:
 [1];  [2];  [1];  [2];  [3]; ORCiD logo [4];  [1];  [5];  [5];  [5];  [6];  [6];  [2]; ORCiD logo [4];  [1];  [1]; ORCiD logo [1]
  1. Univ. of Manchester (United Kingdom). School of Chemistry
  2. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab., ISIS Facility
  3. Univ. of Manchester (United Kingdom). School of Chemistry; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences (Russia)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). The Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate
  5. Harwell Science Campus, Oxford (United Kingdom). Diamond Light Source
  6. European Synchrotron Radiation Facility, Grenoble (France)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1422565
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 139; Journal Issue: 45; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Zhang, Xinran, da Silva, Ivan, Godfrey, Harry G. W., Callear, Samantha K., Sapchenko, Sergey A., Cheng, Yongqiang, Vitórica-Yrezábal, Inigo, Frogley, Mark D., Cinque, Gianfelice, Tang, Chiu C., Giacobbe, Carlotta, Dejoie, Catherine, Rudić, Svemir, Ramirez-Cuesta, Anibal J., Denecke, Melissa A., Yang, Sihai, and Schröder, Martin. Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal–Organic Frameworks. United States: N. p., 2017. Web. doi:10.1021/jacs.7b08748.
Zhang, Xinran, da Silva, Ivan, Godfrey, Harry G. W., Callear, Samantha K., Sapchenko, Sergey A., Cheng, Yongqiang, Vitórica-Yrezábal, Inigo, Frogley, Mark D., Cinque, Gianfelice, Tang, Chiu C., Giacobbe, Carlotta, Dejoie, Catherine, Rudić, Svemir, Ramirez-Cuesta, Anibal J., Denecke, Melissa A., Yang, Sihai, & Schröder, Martin. Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal–Organic Frameworks. United States. https://doi.org/10.1021/jacs.7b08748
Zhang, Xinran, da Silva, Ivan, Godfrey, Harry G. W., Callear, Samantha K., Sapchenko, Sergey A., Cheng, Yongqiang, Vitórica-Yrezábal, Inigo, Frogley, Mark D., Cinque, Gianfelice, Tang, Chiu C., Giacobbe, Carlotta, Dejoie, Catherine, Rudić, Svemir, Ramirez-Cuesta, Anibal J., Denecke, Melissa A., Yang, Sihai, and Schröder, Martin. Wed . "Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal–Organic Frameworks". United States. https://doi.org/10.1021/jacs.7b08748. https://www.osti.gov/servlets/purl/1422565.
@article{osti_1422565,
title = {Confinement of Iodine Molecules into Triple-Helical Chains within Robust Metal–Organic Frameworks},
author = {Zhang, Xinran and da Silva, Ivan and Godfrey, Harry G. W. and Callear, Samantha K. and Sapchenko, Sergey A. and Cheng, Yongqiang and Vitórica-Yrezábal, Inigo and Frogley, Mark D. and Cinque, Gianfelice and Tang, Chiu C. and Giacobbe, Carlotta and Dejoie, Catherine and Rudić, Svemir and Ramirez-Cuesta, Anibal J. and Denecke, Melissa A. and Yang, Sihai and Schröder, Martin},
abstractNote = {During nuclear waste disposal process, radioactive iodine as a fission product can be released. The widespread implementation of sustainable nuclear energy thus requires the development of efficient iodine stores that have simultaneously high capacity, stability and more importantly, storage density (and hence minimized system volume). Here, we report high I2 adsorption in a series of robust porous metal–organic materials, MFM-300(M) (M = Al, Sc, Fe, In). MFM-300(Sc) exhibits fully reversible I2 uptake of 1.54 g g–1, and its structure remains completely unperturbed upon inclusion/removal of I2. Direct observation and quantification of the adsorption, binding domains and dynamics of guest I2 molecules within these hosts have been achieved using XPS, TGA-MS, high resolution synchrotron X-ray diffraction, pair distribution function analysis, Raman, terahertz and neutron spectroscopy, coupled with density functional theory modeling. These complementary techniques reveal a comprehensive understanding of the host–I2 and I2–I2 binding interactions at a molecular level. The initial binding site of I2 in MFM-300(Sc), I2I, is located near the bridging hydroxyl group of the [ScO4(OH)2] moiety [I2I···H–O = 2.263(9) Å] with an occupancy of 0.268. I2II is located interstitially between two phenyl rings of neighboring ligand molecules [I2II···phenyl ring = 3.378(9) and 4.228(5) Å]. I2II is 4.565(2) Å from the hydroxyl group with an occupancy of 0.208. Significantly, at high I2 loading an unprecedented self-aggregation of I2 molecules into triple-helical chains within the confined nanovoids has been observed at crystallographic resolution, leading to a highly efficient packing of I2 molecules with an exceptional I2 storage density of 3.08 g cm–3 in MFM-300(Sc).},
doi = {10.1021/jacs.7b08748},
journal = {Journal of the American Chemical Society},
number = 45,
volume = 139,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) TGA-MS data for bare and I2-loaded MFM-300(Sc); (b) TGA plots and I2 adsorption capacities of MFM-300(M) (M = Al, In, Fe). (c) Amount of I2 adsorption in MFM-300(Sc) as a function of time.

Save / Share:

Works referenced in this record:

A Review of Radiation Effects in Solid Nuclear Waste Forms
journal, February 1983

  • Weber, William J.; Roberts, Frank P.
  • Nuclear Technology, Vol. 60, Issue 2
  • DOI: 10.13182/NT83-A33073

Application of Zeolites to Remove Iodine from Dissolver Off-Gas, (II) Thermal Stability of Iodine Adsorbed on 13X, 5A, and Silver-exchanged Zeolites
journal, September 1983

  • Sakurai, Tsutomu; Izumo, Mishiroku; Takahashi, Akira
  • Journal of Nuclear Science and Technology, Vol. 20, Issue 9
  • DOI: 10.1080/18811248.1983.9733466

Capture of iodine and organic iodides using silica zeolites and the semiconductor behaviour of iodine in a silica zeolite
journal, January 2016

  • Pham, Tung Cao Thanh; Docao, Son; Hwang, In Chul
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE02843D

Ion-Exchangeable Molybdenum Sulfide Porous Chalcogel: Gas Adsorption and Capture of Iodine and Mercury
journal, October 2015

  • Subrahmanyam, Kota S.; Malliakas, Christos D.; Sarma, Debajit
  • Journal of the American Chemical Society, Vol. 137, Issue 43
  • DOI: 10.1021/jacs.5b09110

A nitrogen-rich fluorescent conjugated microporous polymer with triazine and triphenylamine units for high iodine capture and nitro aromatic compound detection
journal, January 2017

  • Geng, Tongmou; Zhu, Zongming; Zhang, Weiyong
  • Journal of Materials Chemistry A, Vol. 5, Issue 16
  • DOI: 10.1039/C7TA00590C

Capture and Reversible Storage of Volatile Iodine by Novel Conjugated Microporous Polymers Containing Thiophene Units
journal, August 2016

  • Qian, Xin; Zhu, Zhao-Qi; Sun, Han-Xue
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 32
  • DOI: 10.1021/acsami.6b06569

Highly Efficient Enrichment of Volatile Iodine by Charged Porous Aromatic Frameworks with Three Sorption Sites
journal, August 2015

  • Yan, Zhuojun; Yuan, Ye; Tian, Yuyang
  • Angewandte Chemie International Edition, Vol. 54, Issue 43
  • DOI: 10.1002/anie.201503362

Ultrahigh volatile iodine uptake by hollow microspheres formed from a heteropore covalent organic framework
journal, January 2017

  • Yin, Zhi-Jian; Xu, Shun-Qi; Zhan, Tian-Guang
  • Chemical Communications, Vol. 53, Issue 53
  • DOI: 10.1039/C7CC01045A

An Elastic Hydrogen-Bonded Cross-Linked Organic Framework for Effective Iodine Capture in Water
journal, May 2017

  • Lin, Yunxiao; Jiang, Xuanfeng; Kim, Samuel T.
  • Journal of the American Chemical Society, Vol. 139, Issue 21
  • DOI: 10.1021/jacs.7b03204

CO 2 Capture and Separations Using MOFs: Computational and Experimental Studies
journal, April 2017


Metal–Organic Frameworks for Air Purification of Toxic Chemicals
journal, April 2014

  • DeCoste, Jared B.; Peterson, Gregory W.
  • Chemical Reviews, Vol. 114, Issue 11
  • DOI: 10.1021/cr4006473

Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration
journal, May 2017


Design and Synthesis of a Water-Stable Anionic Uranium-Based Metal-Organic Framework (MOF) with Ultra Large Pores
journal, July 2016

  • Li, Peng; Vermeulen, Nicolaas A.; Gong, Xirui
  • Angewandte Chemie International Edition, Vol. 55, Issue 35
  • DOI: 10.1002/anie.201605547

Direct Observation of Xe and Kr Adsorption in a Xe-Selective Microporous Metal–Organic Framework
journal, May 2015

  • Chen, Xianyin; Plonka, Anna M.; Banerjee, Debasis
  • Journal of the American Chemical Society, Vol. 137, Issue 22
  • DOI: 10.1021/jacs.5b02556

Effective Mercury Sorption by Thiol-Laced Metal–Organic Frameworks: in Strong Acid and the Vapor Phase
journal, May 2013

  • Yee, Ka-Kit; Reimer, Nele; Liu, Jie
  • Journal of the American Chemical Society, Vol. 135, Issue 21
  • DOI: 10.1021/ja400212k

Competitive I 2 Sorption by Cu-BTC from Humid Gas Streams
journal, June 2013

  • Sava, Dorina F.; Chapman, Karena W.; Rodriguez, Mark A.
  • Chemistry of Materials, Vol. 25, Issue 13
  • DOI: 10.1021/cm401762g

Capture of Volatile Iodine, a Gaseous Fission Product, by Zeolitic Imidazolate Framework-8
journal, August 2011

  • Sava, Dorina F.; Rodriguez, Mark A.; Chapman, Karena W.
  • Journal of the American Chemical Society, Vol. 133, Issue 32
  • DOI: 10.1021/ja204757x

Rigid Pillars and Double Walls in a Porous Metal-Organic Framework: Single-Crystal to Single-Crystal, Controlled Uptake and Release of Iodine and Electrical Conductivity
journal, March 2010

  • Zeng, Ming-Hua; Wang, Qiang-Xin; Tan, Yan-Xi
  • Journal of the American Chemical Society, Vol. 132, Issue 8
  • DOI: 10.1021/ja908293n

Immobilization of Volatile and Corrosive Iodine Monochloride (ICl) and I 2 Reagents in a Stable Metal–Organic Framework
journal, June 2014

  • He, Jun; Duan, Jingjing; Shi, Huatian
  • Inorganic Chemistry, Vol. 53, Issue 13
  • DOI: 10.1021/ic500677t

Iodine sequestration by thiol-modified MIL-53(Al)
journal, January 2016

  • Munn, Alexis S.; Millange, Franck; Frigoli, Michel
  • CrystEngComm, Vol. 18, Issue 41
  • DOI: 10.1039/C6CE01842D

Stepwise crystallographic visualization of dynamic guest binding in a nanoporous framework
journal, January 2017

  • Brunet, Gabriel; Safin, Damir A.; Aghaji, Mohammad Z.
  • Chemical Science, Vol. 8, Issue 4
  • DOI: 10.1039/C7SC00267J

A 4-fold interpenetrated diamondoid metal-organic framework with large channels exhibiting solvent sorption properties and high iodine capture
journal, September 2016


Stereoselective Halogenation of Integral Unsaturated C-C Bonds in Chemically and Mechanically Robust Zr and Hf MOFs
journal, February 2016

  • Marshall, Ross J.; Griffin, Sarah L.; Wilson, Claire
  • Chemistry - A European Journal, Vol. 22, Issue 14
  • DOI: 10.1002/chem.201505185

Micro-Cu 4 I 4 -MOF: reversible iodine adsorption and catalytic properties for tandem reaction of Friedel–Crafts alkylation of indoles with acetals
journal, January 2016

  • Zhu, Neng-Xiu; Zhao, Chao-Wei; Wang, Jian-Cheng
  • Chemical Communications, Vol. 52, Issue 86
  • DOI: 10.1039/C6CC07027B

Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host
journal, September 2012

  • Yang, Sihai; Sun, Junliang; Ramirez-Cuesta, Anibal J.
  • Nature Chemistry, Vol. 4, Issue 11
  • DOI: 10.1038/nchem.1457

Highly selective carbon dioxide adsorption in a water-stable indium–organic framework material
journal, January 2012

  • Qian, Jinjie; Jiang, Feilong; Yuan, Daqiang
  • Chemical Communications, Vol. 48, Issue 78
  • DOI: 10.1039/c2cc35068h

Highly porous and robust scandium-based metal–organic frameworks for hydrogen storage
journal, January 2011

  • Ibarra, Ilich A.; Yang, Sihai; Lin, Xiang
  • Chemical Communications, Vol. 47, Issue 29
  • DOI: 10.1039/c1cc11168j

PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals
journal, July 2007


Diffraction-geometry refinement in the DIALS framework
journal, March 2016

  • Waterman, David G.; Winter, Graeme; Gildea, Richard J.
  • Acta Crystallographica Section D Structural Biology, Vol. 72, Issue 4
  • DOI: 10.1107/S2059798316002187

Scaling and assessment of data quality
journal, December 2005

  • Evans, Philip
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 1, p. 72-82
  • DOI: 10.1107/S0907444905036693

How good are my data and what is the resolution?
journal, June 2013

  • Evans, Philip R.; Murshudov, Garib N.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 69, Issue 7
  • DOI: 10.1107/S0907444913000061

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

First principles methods using CASTEP
journal, January 2005

  • Clark, Stewart J.; Segall, Matthew D.; Pickard, Chris J.
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 220, Issue 5/6
  • DOI: 10.1524/zkri.220.5.567.65075

aCLIMAX 4.0.1, The new version of the software for analyzing and interpreting INS spectra
journal, March 2004


Helicity analysis of single, double, and triple helical iodine chains inside single-walled silicon carbide nanotubes
journal, August 2017

  • Yao, Zhen; Liu, Chun-Jian; Li, Yi
  • Canadian Journal of Physics, Vol. 95, Issue 8
  • DOI: 10.1139/cjp-2016-0901

Atomic Arrangement of Iodine Atoms inside Single-Walled Carbon Nanotubes
journal, May 2000


Polymorphic Structures of Iodine and Their Phase Transition in Confined Nanospace
journal, June 2007

  • Guan, Lunhui; Suenaga, Kazu; Shi, Zujin
  • Nano Letters, Vol. 7, Issue 6
  • DOI: 10.1021/nl070313t

Iodine-templated assembly of unprecedented 3d–4f metal–organic frameworks as photocatalysts for hydrogen generation
journal, January 2013

  • Hu, Xiao-Li; Sun, Chun-Yi; Qin, Chao
  • Chemical Communications, Vol. 49, Issue 34
  • DOI: 10.1039/c3cc39173f

Synthesis, Structure, and Bonding in Polyiodide and Metal Iodide−Iodine Systems
journal, May 2003

  • Svensson, Per H.; Kloo, Lars
  • Chemical Reviews, Vol. 103, Issue 5
  • DOI: 10.1021/cr0204101

Works referencing / citing this record:

Constructing “breathing” dynamic skeletons with extra π-conjugated adsorption sites for iodine capture
journal, January 2019

  • Xia, Lixin; Yang, Dongqi; Zhang, Hongcui
  • RSC Advances, Vol. 9, Issue 36
  • DOI: 10.1039/c9ra01904a

Incarceration of Iodine in a Pyrene‐Based Metal–Organic Framework
journal, December 2018

  • Gładysiak, Andrzej; Nguyen, Tu N.; Spodaryk, Mariana
  • Chemistry – A European Journal
  • DOI: 10.1002/chem.201805073

IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture
journal, January 2019

  • Tang, Yuanzhe; Huang, Hongliang; Li, Jian
  • Journal of Materials Chemistry A, Vol. 7, Issue 31
  • DOI: 10.1039/c9ta04408f

Hydrogen bond-mediated strong adsorbent–I 3 interactions enable high-efficiency radioiodine capture
journal, January 2019

  • Wang, Juan; Li, Zelun; Wang, Ying
  • Materials Horizons, Vol. 6, Issue 7
  • DOI: 10.1039/c9mh00460b

Porous sorbents for the capture of radioactive iodine compounds: a review
journal, January 2018

  • Huve, Joffrey; Ryzhikov, Andrey; Nouali, Habiba
  • RSC Advances, Vol. 8, Issue 51
  • DOI: 10.1039/c8ra04775h

Exploring the multifunctionality in metal–organic framework materials: how do the stilbenedicarboxylate and imidazolyl ligands tune the characteristics of coordination polymers?
journal, January 2018

  • Barsukova, Marina O.; Sapchenko, Sergey A.; Kovalenko, Konstantin A.
  • New Journal of Chemistry, Vol. 42, Issue 8
  • DOI: 10.1039/c8nj00494c

Iodine capture in porous organic polymers and metal–organic frameworks materials
journal, January 2019

  • Xie, Wei; Cui, Di; Zhang, Shu-Ran
  • Materials Horizons, Vol. 6, Issue 8
  • DOI: 10.1039/c8mh01656a

A pillared-layer strategy to construct water-stable Zn–organic frameworks for iodine capture and luminescence sensing of Fe 3+
journal, January 2019

  • Wang, Di; Zhang, Di; Han, Song-De
  • Dalton Transactions, Vol. 48, Issue 2
  • DOI: 10.1039/c8dt04091e

STA-27, a porous Lewis acidic scandium MOF with an unexpected topology type prepared with 2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine
journal, January 2019

  • Prasad, Ram R. R.; Seidner, Sarah E.; Cordes, David B.
  • Journal of Materials Chemistry A, Vol. 7, Issue 10
  • DOI: 10.1039/c8ta10610j

Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture
journal, September 2019

  • Rieth, Adam J.; Wright, Ashley M.; Dincă, Mircea
  • Nature Reviews Materials, Vol. 4, Issue 11
  • DOI: 10.1038/s41578-019-0140-1

Uniform poly(phosphazene–triazine) porous microspheres for highly efficient iodine removal
journal, January 2018

  • Xiong, Shaohui; Tao, Jian; Wang, Yuanyuan
  • Chemical Communications, Vol. 54, Issue 61
  • DOI: 10.1039/c8cc04242j

Novel CoNi-metal–organic framework crystal-derived CoNi@C: synthesis and effective cascade catalysis
journal, January 2020

  • Wang, Lin; Zhang, Jian-Wei; Li, Chenchen
  • Dalton Transactions, Vol. 49, Issue 30
  • DOI: 10.1039/d0dt01558j

High and energy-efficient reversible SO 2 uptake by a robust Sc( iii )-based MOF
journal, January 2019

  • Zárate, J. Antonio; Sánchez-González, Elí; Williams, Daryl R.
  • Journal of Materials Chemistry A, Vol. 7, Issue 26
  • DOI: 10.1039/c9ta02585e

Flame-retardant porous hexagonal boron nitride for safe and effective radioactive iodine capture
journal, January 2019

  • Wang, Juan; Ai, Kelong; Lu, Lehui
  • Journal of Materials Chemistry A, Vol. 7, Issue 28
  • DOI: 10.1039/c9ta04489b

Binding of halogens by a Cr 8 metallacrown
journal, January 2018

  • Sava, Daniel Florin; Zheng, Nan; Vitórica-Yrezábal, Iñigo J.
  • Dalton Transactions, Vol. 47, Issue 39
  • DOI: 10.1039/c8dt03172j

Analysis by synchrotron X-ray scattering of the kinetics of formation of an Fe-based metal-organic framework with high CO 2 adsorption
journal, November 2019

  • Godfrey, Harry G. W.; Briggs, Lydia; Han, Xue
  • APL Materials, Vol. 7, Issue 11
  • DOI: 10.1063/1.5121644

Combining a nine-crystal multi-analyser stage with a two-dimensional detector for high-resolution powder X-ray diffraction
journal, November 2018

  • Dejoie, Catherine; Coduri, Mauro; Petitdemange, Sébastien
  • Journal of Applied Crystallography, Vol. 51, Issue 6
  • DOI: 10.1107/s1600576718014589

Exceptional Iodine Capture in 2D Covalent Organic Frameworks
journal, May 2018


Unexpected structural complexity of thorium coordination polymers and polyoxo cluster built from simple formate ligands
journal, January 2020

  • Li, Zi-Jian; Guo, Shangyao; Lu, Huangjie
  • Inorganic Chemistry Frontiers, Vol. 7, Issue 1
  • DOI: 10.1039/c9qi01263j

Template-free synthesis of porous carbon from triazine based polymers and their use in iodine adsorption and CO2 capture
journal, January 2018


A multifunctional microporous metal–organic framework: efficient adsorption of iodine and column-chromatographic dye separation
journal, January 2018

  • Yao, Chan; Wang, Wei; Zhang, Shu-Ran
  • RSC Advances, Vol. 8, Issue 63
  • DOI: 10.1039/c8ra04648d

Janus triple tripods build up a microporous manifold for HgCl 2 and I 2 uptake
journal, January 2019

  • He, Yonghe; Huang, Mengjiao; Deng, Xiangling
  • Chemical Communications, Vol. 55, Issue 35
  • DOI: 10.1039/c9cc00330d

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.