skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature

Abstract

Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uranium adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1–L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. Here, this model may be used for predicting uranium uptakemore » by other amidoxime materials.« less

Authors:
 [1];  [1];  [2];  [1]; ORCiD logo [3]
  1. Georgia Inst. of Technology, Atlanta, GA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Georgia Inst. of Technology, Atlanta, GA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE), Fuel Cycle Technologies (NE-5)
OSTI Identifier:
1422243
Alternate Identifier(s):
OSTI ID: 1409255
Grant/Contract Number:  
AC05-00OR22725; 14-6789
Resource Type:
Published Article
Journal Name:
Materials
Additional Journal Information:
Journal Volume: 10; Journal Issue: 11; Journal ID: ISSN 1996-1944
Publisher:
MDPI
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; uranium adsorption; amidoxime; comonomer; seawater; temperature effect; modeling

Citation Formats

Ladshaw, Austin P., Wiechert, Alexander I., Das, Sadananda, Yiacoumi, Sotira, and Tsouris, Costas. Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature. United States: N. p., 2017. Web. doi:10.3390/ma10111268.
Ladshaw, Austin P., Wiechert, Alexander I., Das, Sadananda, Yiacoumi, Sotira, & Tsouris, Costas. Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature. United States. doi:10.3390/ma10111268.
Ladshaw, Austin P., Wiechert, Alexander I., Das, Sadananda, Yiacoumi, Sotira, and Tsouris, Costas. Sat . "Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature". United States. doi:10.3390/ma10111268.
@article{osti_1422243,
title = {Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature},
author = {Ladshaw, Austin P. and Wiechert, Alexander I. and Das, Sadananda and Yiacoumi, Sotira and Tsouris, Costas},
abstractNote = {Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uranium adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1–L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. Here, this model may be used for predicting uranium uptake by other amidoxime materials.},
doi = {10.3390/ma10111268},
journal = {Materials},
number = 11,
volume = 10,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.3390/ma10111268

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Characterization and Testing of Amidoxime-Based Adsorbent Materials to Extract Uranium from Natural Seawater
journal, December 2015

  • Kuo, Li-Jung; Janke, Christopher J.; Wood, Jordana R.
  • Industrial & Engineering Chemistry Research, Vol. 55, Issue 15
  • DOI: 10.1021/acs.iecr.5b03267

Recovery of Uranium from Seawater by Immobilized Tannin
journal, June 1987


Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization from Chlorinated Polypropylene and Polyethylene Trunk Fibers
journal, December 2015

  • Brown, Suree; Chatterjee, Sabornie; Li, Meijun
  • Industrial & Engineering Chemistry Research, Vol. 55, Issue 15
  • DOI: 10.1021/acs.iecr.5b03667

Prospects for the Recovery of Uranium from Seawater
journal, April 1986

  • Best, Frederick R.; Driscoll, Michael J.
  • Nuclear Technology, Vol. 73, Issue 1
  • DOI: 10.13182/NT86-A16201

Uptake of Uranium from Seawater by Amidoxime-Based Polymeric Adsorbent: Field Experiments, Modeling, and Updated Economic Assessment
journal, March 2014

  • Kim, Jungseung; Tsouris, Costas; Oyola, Yatsandra
  • Industrial & Engineering Chemistry Research, Vol. 53, Issue 14
  • DOI: 10.1021/ie4039828

Aquaculture of Uranium in Seawater by a Fabric-Adsorbent Submerged System
journal, November 2003

  • Seko, Noriaki; Katakai, Akio; Hasegawa, Shin
  • Nuclear Technology, Vol. 144, Issue 2
  • DOI: 10.13182/NT03-2

Sequestering uranium from seawater: binding strength and modes of uranyl complexes with glutarimidedioxime
journal, January 2012

  • Tian, Guoxin; Teat, Simon J.; Zhang, Zhiyong
  • Dalton Transactions, Vol. 41, Issue 38
  • DOI: 10.1039/c2dt30978e

Influence of Current Velocity on Uranium Adsorption from Seawater Using an Amidoxime-Based Polymer Fiber Adsorbent
journal, February 2017

  • Ladshaw, Austin; Kuo, Li-Jung; Strivens, Jonathan
  • Industrial & Engineering Chemistry Research, Vol. 56, Issue 8
  • DOI: 10.1021/acs.iecr.6b04539

Acidity of the Amidoxime Functional Group in Aqueous Solution: A Combined Experimental and Computational Study
journal, February 2015

  • Mehio, Nada; Lashely, Mark A.; Nugent, Joseph W.
  • The Journal of Physical Chemistry B, Vol. 119, Issue 8
  • DOI: 10.1021/jp512778x

Chelating resin functionalized with dithiocarbamate for the recovery of uranium from seawater
journal, September 1984

  • Tabushi, Iwao; Kobuke, Yoshiaki; Nakayama, Noritake
  • Industrial & Engineering Chemistry Product Research and Development, Vol. 23, Issue 3
  • DOI: 10.1021/i300015a023

Separation of uranium from seawater by adsorbing colloid flotation
journal, January 1978


Adsorption and elution in hollow-fiber-packed bed for recovery of uranium from seawater
journal, January 1991

  • Takeda, Toshiya; Saito, Kyoichi; Uezu, Kazuya
  • Industrial & Engineering Chemistry Research, Vol. 30, Issue 1
  • DOI: 10.1021/ie00049a027

Removal of uranium(VI) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites
journal, August 2015


Characterization of Uranium Uptake Kinetics from Seawater in Batch and Flow-Through Experiments
journal, June 2013

  • Kim, Jungseung; Oyola, Yatsandra; Tsouris, Costas
  • Industrial & Engineering Chemistry Research, Vol. 52, Issue 27
  • DOI: 10.1021/ie400587f

Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)- co -chlorinated Poly(vinyl chloride) (PVC- co -CPVC) Fiber
journal, December 2015

  • Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung
  • Industrial & Engineering Chemistry Research, Vol. 55, Issue 15
  • DOI: 10.1021/acs.iecr.5b03355

Theoretical Study of Oxovanadium(IV) Complexation with Formamidoximate: Implications for the Design of Uranyl-Selective Adsorbents
journal, December 2015

  • Mehio, Nada; Ivanov, Alexander S.; Ladshaw, Austin P.
  • Industrial & Engineering Chemistry Research, Vol. 55, Issue 15
  • DOI: 10.1021/acs.iecr.5b03398

Recovery of uranium by tannin immobilized on matrices which have amino group
journal, January 1990

  • Nakajima, Akira; Sakaguchi, Takashi
  • Journal of Chemical Technology & Biotechnology, Vol. 47, Issue 1
  • DOI: 10.1002/jctb.280470105

Scientific Basis for Efficient Extraction of Uranium from Seawater. I: Understanding the Chemical Speciation of Uranium under Seawater Conditions
journal, December 2015

  • Endrizzi, Francesco; Leggett, Christina J.; Rao, Linfeng
  • Industrial & Engineering Chemistry Research, Vol. 55, Issue 15
  • DOI: 10.1021/acs.iecr.5b03679

MINEQL+: A software environment for chemical equilibrium modeling
journal, January 1992


Recovery and removal of uranium by using plant wastes
journal, January 1990


Extraction of Uranium from Sea Water
journal, September 1964

  • Davies, R. V.; Kennedy, J.; McILROY, R. W.
  • Nature, Vol. 203, Issue 4950
  • DOI: 10.1038/2031110a0

Amidoximes as ligand functionalities for braided polymeric materials for the recovery of uranium from seawater
journal, April 2016


Separation of uranium from seawater by adsorbing colloid flotation
journal, August 1971

  • Kim, Young S.; Zeitlin, Harry.
  • Analytical Chemistry, Vol. 43, Issue 11
  • DOI: 10.1021/ac60305a014

Novel poly(imide dioxime) sorbents: Development and testing for enhanced extraction of uranium from natural seawater
journal, August 2016


Extraction of uranium from seawater by polymer-bound macrocyclic hexaketone
journal, August 1979

  • Tabushi, Iwao; Kobuke, Yoshiaki; Nishiya, Takako
  • Nature, Vol. 280, Issue 5724
  • DOI: 10.1038/280665a0

An ion-binding model for ionic surfactant adsorption at aqueous-fluid interfaces
journal, August 1996


Solvation of the Ca 2 UO 2 (CO 3 ) 3 Complex in Seawater from Classical Molecular Dynamics
journal, July 2016

  • Wu, Weihong; Priest, Chad; Zhou, Jingwei
  • The Journal of Physical Chemistry B, Vol. 120, Issue 29
  • DOI: 10.1021/acs.jpcb.6b05452

Optimal amidoximation conditions of acrylonitrile grafted onto polypropylene by photoirradiation-induced graft polymerization
journal, December 2011

  • Na, Choon-Ki; Park, Hyun-Ju; Kim, Byoung-Gyu
  • Journal of Applied Polymer Science, Vol. 125, Issue 1
  • DOI: 10.1002/app.35059

Recovery of Uranium from Seawater
journal, October 1981


Scientific Basis for Efficient Extraction of Uranium from Seawater, II: Fundamental Thermodynamic and Structural Studies
journal, December 2015

  • Leggett, Christina J.; Endrizzi, Francesco; Rao, Linfeng
  • Industrial & Engineering Chemistry Research, Vol. 55, Issue 15
  • DOI: 10.1021/acs.iecr.5b03688

Recovery of uranium from seawater. 14. System arrangements for the recovery of uranium from seawater by spherical amidoxime chelating resins utilizing natural seawater motions
journal, April 1993

  • Egawa, Hiroaki; Kabay, Nalan; Shuto, Taketomi
  • Industrial & Engineering Chemistry Research, Vol. 32, Issue 4
  • DOI: 10.1021/ie00016a018

Optimization of the Passive Recovery of Uranium from Seawater
journal, December 2015

  • Flicker Byers, M.; Schneider, E.
  • Industrial & Engineering Chemistry Research, Vol. 55, Issue 15
  • DOI: 10.1021/acs.iecr.5b03242

[モール状捕集材を用いた海水ウラン捕集の実規模システムの検討]<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2004-01-01">January 2004</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Shimizu, Takao; Tamada, Masao</span> </li> <li> PROCEEDINGS OF CIVIL ENGINEERING IN THE OCEAN, Vol. 20</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.2208/prooe.20.617" class="text-muted" target="_blank" rel="noopener noreferrer">10.2208/prooe.20.617<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/PL00008955" target="_blank" rel="noopener noreferrer" class="name">Studies on the biosorption of uranium by a thermotolerant, ethanol-producing strain of Kluyveromyces marxianus<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1997-06-26">June 1997</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Bustard, M.; Donnellan, N.; Rollan, A.</span> </li> <li> Bioprocess Engineering, Vol. 17, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/PL00008955" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/PL00008955<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1038/nchem.1856" target="_blank" rel="noopener noreferrer" class="name">A protein engineered to bind uranyl selectively and with femtomolar affinity<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-01-26">January 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Zhou, Lu; Bosscher, Mike; Zhang, Changsheng</span> </li> <li> Nature Chemistry, Vol. 6, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1038/nchem.1856" class="text-muted" target="_blank" rel="noopener noreferrer">10.1038/nchem.1856<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1080/01496395.2012.712599" target="_blank" rel="noopener noreferrer" class="name">Recovery of Uranium from Seawater: A Review of Current Status and Future Research Needs<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-01-01">January 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Kim, Jungseung; Tsouris, Costas; Mayes, Richard T.</span> </li> <li> Separation Science and Technology, Vol. 48, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1080/01496395.2012.712599" class="text-muted" target="_blank" rel="noopener noreferrer">10.1080/01496395.2012.712599<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1080/18811248.1984.9731004" target="_blank" rel="noopener noreferrer" class="name">Present Status of Study on Extraction of Uranium from Sea Water<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1984-01-01">January 1984</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Kanno, Masayoshi</span> </li> <li> Journal of Nuclear Science and Technology, Vol. 21, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1080/18811248.1984.9731004" class="text-muted" target="_blank" rel="noopener noreferrer">10.1080/18811248.1984.9731004<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/cr60130a002" target="_blank" rel="noopener noreferrer" class="name">The Electrical Double Layer and the Theory of Electrocapillarity.<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1947-12-01">December 1947</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Grahame, David C.</span> </li> <li> Chemical Reviews, Vol. 41, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/cr60130a002" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/cr60130a002<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.desal.2008.02.005" target="_blank" rel="noopener noreferrer" class="name">Extraction of uranium from the concentrated brine rejected by integrated nuclear desalination plants<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2009-01-01">January 2009</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Sodaye, H.; Nisan, S.; Poletiko, C.</span> </li> <li> Desalination, Vol. 235, Issue 1-3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.desal.2008.02.005" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.desal.2008.02.005<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.jcis.2011.09.069" target="_blank" rel="noopener noreferrer" class="name">Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-01-01">January 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Zhou, Limin; Shang, Chao; Liu, Zhirong</span> </li> <li> Journal of Colloid and Interface Science, Vol. 366, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.jcis.2011.09.069" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.jcis.2011.09.069<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/acs.iecr.5b03136" target="_blank" rel="noopener noreferrer" class="name">Extracting Uranium from Seawater: Promising AF Series Adsorbents<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-11-13">November 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Das, S.; Oyola, Y.; Mayes, Richard T.</span> </li> <li> Industrial & Engineering Chemistry Research, Vol. 55, Issue 15</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/acs.iecr.5b03136" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/acs.iecr.5b03136<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1039/C6DT01752E" target="_blank" rel="noopener noreferrer" class="name">Assessing ligand selectivity for uranium over vanadium ions to aid in the discovery of superior adsorbents for extraction of UO <sub>2</sub> <sup>2+</sup> from seawater<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-01-01">January 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Ivanov, Alexander S.; Bryantsev, Vyacheslav S.</span> </li> <li> Dalton Transactions, Vol. 45, Issue 26</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1039/C6DT01752E" class="text-muted" target="_blank" rel="noopener noreferrer">10.1039/C6DT01752E<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/acs.iecr.5b03135" target="_blank" rel="noopener noreferrer" class="name">Extracting Uranium from Seawater: Promising AI Series Adsorbents<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-11-24">November 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Das, S.; Oyola, Y.; Mayes, R. T.</span> </li> <li> Industrial & Engineering Chemistry Research, Vol. 55, Issue 15</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/acs.iecr.5b03135" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/acs.iecr.5b03135<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/acs.inorgchem.5b02653" target="_blank" rel="noopener noreferrer" class="name">Complexation of Lanthanides with Glutaroimide-dioxime: Binding Strength and Coordination Modes<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-01-12">January 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Ansari, Seraj A.; Yang, Yanqiu; Zhang, Zhicheng</span> </li> <li> Inorganic Chemistry, Vol. 55, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/acs.inorgchem.5b02653" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/acs.inorgchem.5b02653<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/acs.iecr.5b03211" target="_blank" rel="noopener noreferrer" class="name">Acidity of the Poly(acrylamidoxime) Adsorbent in Aqueous Solution: Determination of the Proton Affinity Distribution via Potentiometric Titrations<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-12-01">December 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Mehio, Nada; Williamson, Ben; Oyola, Yatsandra</span> </li> <li> Industrial & Engineering Chemistry Research, Vol. 55, Issue 15</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/acs.iecr.5b03211" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/acs.iecr.5b03211<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/ie00027a025" target="_blank" rel="noopener noreferrer" class="name">Effect of seawater temperature on uranium recovery from seawater using amidoxime adsorbents<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1994-03-01">March 1994</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Sekiguchi, Koji; Saito, Kyoichi; Konishi, Satoshi</span> </li> <li> Industrial & Engineering Chemistry Research, Vol. 33, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/ie00027a025" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/ie00027a025<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/acs.iecr.5b03456" target="_blank" rel="noopener noreferrer" class="name">Experiments and Modeling of Uranium Uptake by Amidoxime-Based Adsorbent in the Presence of Other Ions in Simulated Seawater<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2015-12-01">December 2015</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Ladshaw, A. P.; Das, S.; Liao, W. -P.</span> </li> <li> Industrial & Engineering Chemistry Research, Vol. 55, Issue 15</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/acs.iecr.5b03456" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/acs.iecr.5b03456<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1080/01496398108057595" target="_blank" rel="noopener noreferrer" class="name">Extraction of Uranium from Seawater Using Magnetic Adsorbents<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1981-10-01">October 1981</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Yamashita, H.; Fujita, K.; Nakajima, F.</span> </li> <li> Separation Science and Technology, Vol. 16, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1080/01496398108057595" class="text-muted" target="_blank" rel="noopener noreferrer">10.1080/01496398108057595<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s10967-012-1912-x" target="_blank" rel="noopener noreferrer" class="name">Uranium (VI) recovery from saline environment by a marine unicellular cyanobacterium, Synechococcus elongatus<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-07-03">July 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Acharya, C.; Chandwadkar, P.; Joseph, D.</span> </li> <li> Journal of Radioanalytical and Nuclear Chemistry, Vol. 295, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s10967-012-1912-x" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s10967-012-1912-x<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1039/c3dt32940b" target="_blank" rel="noopener noreferrer" class="name">Thermodynamic studies of U(vi) complexation with glutardiamidoxime for sequestration of uranium from seawater<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-01-01">January 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Tian, Guoxin; Teat, Simon J.; Rao, Linfeng</span> </li> <li> Dalton Transactions, Vol. 42, Issue 16</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1039/c3dt32940b" class="text-muted" target="_blank" rel="noopener noreferrer">10.1039/c3dt32940b<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div><div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/ie00080a018" target="_blank" rel="noopener noreferrer" class="name">Composite fiber adsorbent for rapid uptake of uranyl from seawater<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1988-08-01">August 1988</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Kobuke, Yoshiaki; Tabushi, Iwao; Aoki, Takao</span> </li> <li> Industrial & Engineering Chemistry Research, Vol. 27, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/ie00080a018" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/ie00080a018<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div></div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="fa fa-angle-left"></span></a><ul class="pagination d-inline-block" style="padding-left:.2em;"></ul><a class="pure-button next page" href="#" rel="next"><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (53)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar records in OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1409255-amidoxime-polymers-uranium-adsorption-influence-comonomers-temperature" itemprop="url">Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Ladshaw, Austin P.</span> ; <span class="author">Wiechert, Alexander I.</span> ; <span class="author">Das, Sadananda</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Materials</span> </span> </div> <div class="abstract">Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uranium<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1–L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. Here, this model may be used for predicting uranium uptake by other amidoxime materials.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 8<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.3390/ma10111268" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1409255" data-product-type="Journal Article" data-product-subtype="AM" >10.3390/ma10111268</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1409255" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1409255" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1332622-uranium-from-seawater-marine-testing-program-university-miamis-broad-key-island-research-station" itemprop="url">Uranium from Seawater Marine Testing Program at the University of Miami’s Broad Key Island Research Station</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Technical Report</small><span class="authors"> <span class="author">Gill, Gary A.</span> ; <span class="author">Kuo, Li-Jung</span> ; <span class="author">Strivens, Jonathan E.</span> ; <span class="author">...</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">Marine testing at Broad Key Island (BKI), Florida was conducted to validate adsorption capacity and adsorption kinetics results obtained for several formulations of the ORNL amidoxime-based polymeric adsorbents in Sequim Bay, Washington in another location with different oceanographic and water quality conditions (e.g. temperature, dissolved organic carbon, salinity and trace element content). Broad Key is a small island off the southeast coast of Florida at the southern end of Biscayne Bay. Flow-through column and recirculating flume experiments were conducted at BKI using ambient filtered seawater and identical exposure systems as were used at the Pacific Northwest National Laboratory’s (PNNL) Marine<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> Sciences laboratory (MSL). Testing was conducted in two periods in FY 2015 and FY 2016 with five different amidoxime-based adsorbent materials, four produced by ORNL (AF1, AI8, AF8, and AF1-DMSO) and one by LCW technologies (LCW-10). All exposures were conducted at ambient seawater temperatures, with moderate temperature control on the ambient seawater to mitigate large daily swings in the seawater temperature. The ORNL adsorbents AF1, AI8 and AF1-AO-DMSO all had fairly similar adsorption capacities (6.0 to 6.6 g U/ kg adsorbent) after 56 days of exposure at ambient temperature (26 to 31 °C) and salinity (35.7 to 37.4), but the AF8 adsorbent was considerably lower at 4.4 g U/kg adsorbent. All the adsorbents tested at BKI had higher capacities than was observed at PNNL, with the higher temperatures likely a major factor contributing to this difference. In general, the elemental distribution (expressed as a relative percentage) on all the adsorbents agreed well, including good agreement with the elemental distribution pattern for AF1 adsorbent exposed at PNNL. The most notable exception to a uniform elemental distributional pattern across the various adsorbents occurs with vanadium. The relative mass percentage for vanadium retained by the adsorbents ranged from a minimum of 13% for the AF8 formulation to a maximum of 29% for the AI8 formulation. All the V/U mass ratios at BKI are lower than observed for the AF1 adsorbent at PNNL (3.0). Temperature likely plays a significant role in the V/U mass ratio difference between BKI and PNNL. Because uranium has a higher adsorption capacity at higher temperatures, one would expect that warmer exposures would favor a lower V/U mass ratio, which could explain why the V/U mass ratio for the PNNL exposures are higher than observed for the BKI exposures. Marine Testing at BKI offers the opportunity to test adsorbent performance under warmer ambient and more saline conditions than exist at the marine test site on Sequim Bay. This is particularly important since the amidoxime-based adsorbents respond strongly to temperature. In addition, since salinities are about 15% higher at BKI compared to Sequim Bay (36 vs. 31), uranium adsorption capacities are about 15% higher at the BKI site compared to Sequim Bay.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.2172/1332622" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1332622" data-product-type="Technical Report" data-product-subtype="" >10.2172/1332622</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1332622" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1332622" data-product-type="Technical Report" data-product-subtype="" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1286943-uranium-from-seawater-program-pnnl-overview-marine-testing-adsorbent-characterization-adsorbent-durability-adsorbent-toxicity-deployment-studies" itemprop="url">The uranium from seawater program at PNNL: Overview of marine testing, adsorbent characterization, adsorbent durability, adsorbent toxicity, and deployment studies</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Gill, Gary A.</span> ; <span class="author">Kuo, Li -Jung</span> ; <span class="author">Janke, Christopher James</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Industrial and Engineering Chemistry Research</span> </span> </div> <div class="abstract">The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacity<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods Hole Oceanographic Institution with the ORNL AF1 adsorbent produced 15% and 55% higher adsorption capacities than observed at PNNL for column and flume testing, respectively. Variations in competing ions may be the explanation for the regional differences. In addition to marine testing, a number of other efforts are underway to characterize adsorbents and impacts of deployment on the marine environment. Highlights include: Hydrodynamic modelling predicts that a farm of adsorbent materials will likely have minimal effect on ocean currents and removal of uranium and other elements from seawater when densities are < 1800 braids/km <sup>2</sup>. A decrease in U adsorption capacity of up to 30% was observed after 42 days of exposure due to biofouling when the ORNL braided adsorbent AI8 was exposed to raw seawater in a flume in the presence of light. An identical raw seawater exposure with no light exposure showed little or no impact to adsorption capacity from biofouling. No toxicity was observed with column effluents of any absorbent materials tested to date. Toxicity could be induced with some non amidoxime-based absorbents only when the ratio of solid absorbent to test media was increased to highly unrealistic levels. Thermodynamic modeling of the seawater-amidoxime adsorbent was performed using the geochemical modeling program PHREEQC. Modeling of the binding of Ca, Mg, Fe, Ni, Cu, U, and V from batch interactions with seawater across a variety of concentrations of the amidoxime binding group reveal that when binding sites are limited (1 x 10 <sup>-8</sup> binding sites/kg seawater), vanadium heavily out-competes other ions for the amidoxime sites. In contrast, when binding sites are abundant magnesium and calcium dominate the total percentage of metals bound to the sorbent.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 17<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1021/acs.iecr.5b03649" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1286943" data-product-type="Journal Article" data-product-subtype="AM" >10.1021/acs.iecr.5b03649</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1286943" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1286943" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1330925-investigations-reusability-amidoxime-based-polymeric-uranium-adsorbents" itemprop="url">Investigations Into the Reusability of Amidoxime-Based Polymeric Uranium Adsorbents</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Technical Report</small><span class="authors"> <span class="author">Kuo, Li-Jung</span> ; <span class="author">Gill, Gary A.</span> ; <span class="author">Strivens, Jonathan E.</span> ; <span class="author">...</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">Significant advancements in amidoxime-based polymeric adsorbents to extract uranium from seawater are achieved in recent years. The success of uranium adsorbent development can help provide a sustainable supply of fuel for nuclear reactors. To bring down the production cost of this new technology, in addition to the development of novel adsorbents with high uranium capacity and manufacture cost, the development of adsorbent re-using technique is critical because it can further reduce the cost of the adsorbent manufacture. In our last report, the use of high concentrations of bicarbonate solution (3M KHCO3) was identified as a cost-effective, environmental friendly method to<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> strip uranium from amidoxime-based polymeric adsorbents. This study aims to further improve the method for high recovery of uranium capacity in re-uses and to evaluate the performance of adsorbents after multiple re-use cycles. Adsorption of dissolved organic matter (DOM) on the uranium adsorbents during seawater exposure can hinder the uranium adsorption and slow down the adsorption rate. An additional NaOH rinse (0.5 M NaOH, room temperature) was applied after the 3 M KHCO3 elution to remove natural organic matter from adsorbents. The combination of 3 M KHCO3 elution and 0.5 M NaOH rinse significantly improves the recovery of uranium adsorption capacity in the re-used adsorbents. In the first re-use, most ORNL adsorbents tested achieve ~100% recovery by using 3 M KHCO3 elution + 0.5 M NaOH rinse approach, in comparison to 54% recovery when only 3 M KHCO3 elution was applied. A significant drop in capacity was observed when the adsorbents went through more than one re-use. FTIR spectra revealed that degradation of amidoxime ligands occurs during seawater exposure, and is more significant the longer the exposure time. Significantly elevated ratios of Ca/U and Mg/U in re-used adsorbents support the decrease in abundance of amidoxime ligands and increase carboxylate group from FT-IR analysis. The impact of the length of seawater exposure cycle in adsorbent re-use was evaluated by comparing the adsorption capacity for a common adsorbent formulation (ORNL AI8 formulation) under different exposure cycle (28 days and 42 days). Adsorbents with a 28 days seawater exposure cycle had higher recovery of uranium capacity than adsorbent with 42 days of seawater exposure. Under different cumulative seawater exposure time, the adsorbent with 28 days seawater exposure cycle also had less amidoxime ligands degradation than the adsorbent with 42 days seawater exposure cycle. These observations support the negative impact of prolonged seawater exposure on amidoxime ligands stability. Recovery of uranium capacity in re-uses also varies across different adsorbent formulations. Among three different ORNL adsorbents tested (AI8, AF8, AF1-DMSO), AI8 had the best recovery in each re-use, followed by AF8 and then AF1-DMSO. This demonstrates that continuing efforts on developing new adsorbents with high capacity and stability is critical. The overall performance of adsorbents in multiple re-use cycles can be evaluated by calculation total harvestable uranium, the summation of adsorbed uranium from each seawater exposure cycle. In this assessment, the ORNL AI8 braid with 28 days seawater exposure cycle can reach total harvestable uranium 10g Uranium/kg adsorbent in ~140 days; while the same type of braid but with 42 days seawater exposure cycle reach the same level in ~170 days. Notably, the performance of total harvestable uranium also varies among different adsorbent formulations (AI8 > AF1-DMSO > AF8). Short seawater exposure cycle is associated with high re-use frequency. The development of low-cost offshore adsorbent deployment/extraction is essential for high frequency reuse operation. This study also highlights the importance to examine the re-use performance of newly developed uranium adsorbents for selection of optimal adsorbents for ocean deployment.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.2172/1330925" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1330925" data-product-type="Technical Report" data-product-subtype="" >10.2172/1330925</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1330925" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1330925" data-product-type="Technical Report" data-product-subtype="" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1327113-characterization-testing-amidoxime-based-adsorbent-materials-extract-uranium-from-natural-seawater" itemprop="url">Characterization and Testing of Amidoxime-Based Adsorbent Materials to Extract Uranium from Natural Seawater</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Kuo, Li-Jung</span> ; <span class="author">Janke, Christopher J.</span> ; <span class="author">Wood, Jordana R.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Industrial and Engineering Chemistry Research</span> </span> </div> <div class="abstract">Extraction of uranium (U) from seawater for use as a nuclear fuel is a significant challenge due to the low concentration of U in seawater (~3.3 ppb) and difficulties to selectively extract U from the background of major and trace elements in seawater. The Pacific Northwest National Laboratory (PNNL)’s Marine Sciences Laboratory (MSL) has been serving as a marine test site for determining performance characteristics (adsorption capacity, adsorption kinetics, and selectivity) of novel amidoxime-based polymeric adsorbents developed at Oak Ridge National Laboratory (ORNL) under natural seawater exposure conditions. This manuscript describes the performance of three formulations (38H, AF1, AI8) of<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> amidoxime-based polymeric adsorbents produced at ORNL in MSL’s ambient seawater testing facility. The adsorbents were produced in two forms, fibrous material (40-100 mg samples) and braided material (5-10 g samples), and exposed to natural seawater using flow-through columns and recirculating flumes. All three formulations demonstrated high 56 day uranium adsorption capacity (>3 g U/kg adsorbent). The AF1 formulation had the best uranium adsorption performance, with a 56 day capacity of 3.9 g U/ kg adsorbent, a saturation capacity of 5.4 g U/kg adsorbent, and ~25 days half-saturation time. The two exposure methods, flowthrough columns and flumes, were demonstrated to produce similar performance results, providing confidence that the test methods were reliable, that scaling up from 10’s of mg quantities of exposure in flow-through columns to gram quantities in flumes produced similar results, and confirm that the manufacturing process produces a homogeneous adsorbent. Adsorption kinetics appear to be element specific, with half-saturation times ranging from minutes for the major cations in seawater, to 8-10 weeks for V and Fe. Reducing the exposure time provides a potential pathway to improve the adsorption capacity of U by reducing the V/U ratio on the adsorbent.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1021/acs.iecr.5b03267" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1327113" data-product-type="Journal Article" data-product-subtype="AC" >10.1021/acs.iecr.5b03267</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9; /* padding-top: 0.5rem; */"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator" /> <div class="text-center" style="margin-top:1.25rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="/"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="text-center small" style="margin-top:0.5em;margin-bottom:2.0rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="/disclaim" class="pure-menu-link"><span class="fa fa-institution"></span> Website Policies <span class="hidden-xs">/ Important Links</span></a></li> <li class="pure-menu-item"><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span> Contact Us</a></li> <li class="d-block d-md-none"></li> <li class="pure-menu-item"><a href="https://www.facebook.com/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-facebook" style=""></span></a></li> <li class="pure-menu-item"><a href="https://twitter.com/OSTIgov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-twitter" style=""></span></a></li> <li class="pure-menu-item"><a href="https://www.youtube.com/user/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-youtube-play" style=""></span></a></li> </ul> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.200113.2012.css" rel="stylesheet"> <script src="/pages/js/pages.200113.2012.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.200113.2012.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript><script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript></body> <!-- DOE PAGES v.200113.2012 --> </html>