DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network

Abstract

Machine learning (ML) has emerged as a powerful complement to simulation for materials discovery by reducing time for evaluation of energies and properties at accuracy competitive with first-principles methods. We use genetic algorithm (GA) optimization to discover unconventional spin-crossover complexes in combination with efficient scoring from an artificial neural network (ANN) that predicts spin-state splitting of inorganic complexes. We explore a compound space of over 5600 candidate materials derived from eight metal/oxidation state combinations and a 32-ligand pool. We introduce a strategy for error-aware ML-driven discovery by limiting how far the GA travels away from the nearest ANN training points while maximizing property (i.e., spin-splitting) fitness, leading to discovery of 80% of the leads from full chemical space enumeration. Over a 51-complex subset, average unsigned errors (4.5 kcal/mol) are close to the ANN’s baseline 3 kcal/mol error. By obtaining leads from the trained ANN within seconds rather than days from a DFT-driven GA, this strategy demonstrates the power of ML for accelerating inorganic material discovery.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1421993
Alternate Identifier(s):
OSTI ID: 1508752
Grant/Contract Number:  
SC0018096; N00014-17-1-2956; CBET-1704266; ACI-1548562
Resource Type:
Published Article
Journal Name:
Journal of Physical Chemistry Letters
Additional Journal Information:
Journal Name: Journal of Physical Chemistry Letters Journal Volume: 9 Journal Issue: 5; Journal ID: ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Janet, Jon Paul, Chan, Lydia, and Kulik, Heather J. Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network. United States: N. p., 2018. Web. doi:10.1021/acs.jpclett.8b00170.
Janet, Jon Paul, Chan, Lydia, & Kulik, Heather J. Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network. United States. https://doi.org/10.1021/acs.jpclett.8b00170
Janet, Jon Paul, Chan, Lydia, and Kulik, Heather J. Thu . "Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network". United States. https://doi.org/10.1021/acs.jpclett.8b00170.
@article{osti_1421993,
title = {Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network},
author = {Janet, Jon Paul and Chan, Lydia and Kulik, Heather J.},
abstractNote = {Machine learning (ML) has emerged as a powerful complement to simulation for materials discovery by reducing time for evaluation of energies and properties at accuracy competitive with first-principles methods. We use genetic algorithm (GA) optimization to discover unconventional spin-crossover complexes in combination with efficient scoring from an artificial neural network (ANN) that predicts spin-state splitting of inorganic complexes. We explore a compound space of over 5600 candidate materials derived from eight metal/oxidation state combinations and a 32-ligand pool. We introduce a strategy for error-aware ML-driven discovery by limiting how far the GA travels away from the nearest ANN training points while maximizing property (i.e., spin-splitting) fitness, leading to discovery of 80% of the leads from full chemical space enumeration. Over a 51-complex subset, average unsigned errors (4.5 kcal/mol) are close to the ANN’s baseline 3 kcal/mol error. By obtaining leads from the trained ANN within seconds rather than days from a DFT-driven GA, this strategy demonstrates the power of ML for accelerating inorganic material discovery.},
doi = {10.1021/acs.jpclett.8b00170},
journal = {Journal of Physical Chemistry Letters},
number = 5,
volume = 9,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acs.jpclett.8b00170

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1. Figure 1.: (top) Representative descriptors in MCDL-25: metal properties, metal-adjacent (i.e., local ligand properties), and global ligand properties. (bottom) Representative complexes including Fe(II)(H2O)6 in training data and increasingly distant complexes from the training data (left to right): Fe(II)(bpy)3, Fe(II)(H2O)2(furan)4, and Fe(II)(bpy)2(furan)2. The closest training point and its distance is indicatedmore » below each complex.« less

Save / Share:

Works referenced in this record:

From Organized High-Throughput Data to Phenomenological Theory using Machine Learning: The Example of Dielectric Breakdown
journal, February 2016


Assertion and validation of the performance of the B3LYP⋆ functional for the first transition metal row and the G2 test set
journal, September 2002

  • Salomon, Oliver; Reiher, Markus; Hess, Bernd Artur
  • The Journal of Chemical Physics, Vol. 117, Issue 10
  • DOI: 10.1063/1.1493179

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

A Simple Approach for Predicting the Spin State of Homoleptic Fe(II) Tris-diimine Complexes
journal, April 2017

  • Phan, Hoa; Hrudka, Jeremy J.; Igimbayeva, Dilyara
  • Journal of the American Chemical Society, Vol. 139, Issue 18
  • DOI: 10.1021/jacs.7b02098

Reparameterization of hybrid functionals based on energy differences of states of different multiplicity
journal, December 2001

  • Reiher, Markus; Salomon, Oliver; Artur Hess, Bernd
  • Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), Vol. 107, Issue 1
  • DOI: 10.1007/s00214-001-0300-3

Quantum Chemistry on Graphical Processing Units. 1. Strategies for Two-Electron Integral Evaluation
journal, January 2008

  • Ufimtsev, Ivan S.; Martínez, Todd J.
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 2
  • DOI: 10.1021/ct700268q

Building ligand knowledge bases for organometallic chemistry: Computational description of phosphorus(III)-donor ligands and the metal–phosphorus bond
journal, March 2009

  • Fey, Natalie; Orpen, A. Guy; Harvey, Jeremy N.
  • Coordination Chemistry Reviews, Vol. 253, Issue 5-6
  • DOI: 10.1016/j.ccr.2008.04.017

Genetic algorithms in chemometrics and chemistry: a review
journal, January 2001

  • Leardi, Riccardo
  • Journal of Chemometrics, Vol. 15, Issue 7
  • DOI: 10.1002/cem.651

van der Waals Volumes and Radii
journal, March 1964

  • Bondi, A.
  • The Journal of Physical Chemistry, Vol. 68, Issue 3, p. 441-451
  • DOI: 10.1021/j100785a001

Auxiliary basis sets to approximate Coulomb potentials
journal, June 1995


Computational Discovery of Hydrogen Bond Design Rules for Electrochemical Ion Separation
journal, August 2016


Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space
journal, June 2015

  • Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 12
  • DOI: 10.1021/acs.jpclett.5b00831

Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error
journal, October 2017

  • Faber, Felix A.; Hutchison, Luke; Huang, Bing
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 11
  • DOI: 10.1021/acs.jctc.7b00577

Ligand-Field-Dependent Behavior of Meta-GGA Exchange in Transition-Metal Complex Spin-State Ordering
journal, October 2016

  • Ioannidis, Efthymios I.; Kulik, Heather J.
  • The Journal of Physical Chemistry A, Vol. 121, Issue 4
  • DOI: 10.1021/acs.jpca.6b11930

Predicting electronic structure properties of transition metal complexes with neural networks
journal, January 2017

  • Janet, Jon Paul; Kulik, Heather J.
  • Chemical Science, Vol. 8, Issue 7
  • DOI: 10.1039/C7SC01247K

COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient
journal, January 1993


The high-throughput highway to computational materials design
journal, February 2013

  • Curtarolo, Stefano; Hart, Gus L. W.; Nardelli, Marco Buongiorno
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3568

Leveraging Cheminformatics Strategies for Inorganic Discovery: Application to Redox Potential Design
journal, April 2017

  • Janet, Jon Paul; Gani, Terry Z. H.; Steeves, Adam H.
  • Industrial & Engineering Chemistry Research, Vol. 56, Issue 17
  • DOI: 10.1021/acs.iecr.7b00808

Machine-Learning-Augmented Chemisorption Model for CO 2 Electroreduction Catalyst Screening
journal, August 2015

  • Ma, Xianfeng; Li, Zheng; Achenie, Luke E. K.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 18
  • DOI: 10.1021/acs.jpclett.5b01660

Towards quantifying the role of exact exchange in predictions of transition metal complex properties
journal, July 2015

  • Ioannidis, Efthymios I.; Kulik, Heather J.
  • The Journal of Chemical Physics, Vol. 143, Issue 3
  • DOI: 10.1063/1.4926836

The ligand field molecular mechanics model and the stereoelectronic effects of d and s electrons
journal, February 2001


Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials
journal, October 1997

  • Eichkorn, Karin; Weigend, Florian; Treutler, Oliver
  • Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), Vol. 97, Issue 1-4
  • DOI: 10.1007/s002140050244

Ironing out the photochemical and spin-crossover behavior of Fe(II) coordination compounds with computational chemistry
journal, April 2017


molSimplify: A toolkit for automating discovery in inorganic chemistry
journal, July 2016

  • Ioannidis, Efthymios I.; Gani, Terry Z. H.; Kulik, Heather J.
  • Journal of Computational Chemistry, Vol. 37, Issue 22
  • DOI: 10.1002/jcc.24437

Development and testing of a general amber force field
journal, January 2004

  • Wang, Junmei; Wolf, Romain M.; Caldwell, James W.
  • Journal of Computational Chemistry, Vol. 25, Issue 9
  • DOI: 10.1002/jcc.20035

Evolutionary pattern design for copolymer directed self-assembly
journal, January 2013

  • Qin, Jian; Khaira, Gurdaman S.; Su, Yongrui
  • Soft Matter, Vol. 9, Issue 48
  • DOI: 10.1039/c3sm51971f

Harnessing Organic Ligand Libraries for First-Principles Inorganic Discovery: Indium Phosphide Quantum Dot Precursor Design Strategies
journal, April 2017


Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches
journal, March 2007


A Simple Method of Predicting Spin State in Solution
journal, December 2017

  • Rodríguez-Jiménez, Santiago; Yang, Mingrui; Stewart, Ian
  • Journal of the American Chemical Society, Vol. 139, Issue 50
  • DOI: 10.1021/jacs.7b11069

Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics
journal, October 2017

  • Gani, Terry Z. H.; Kulik, Heather J.
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 11
  • DOI: 10.1021/acs.jctc.7b00848

Intrinsic Bond Energies from a Bonds-in-Molecules Neural Network
journal, June 2017


Stochastic Voyages into Uncharted Chemical Space Produce a Representative Library of All Possible Drug-Like Compounds
journal, May 2013

  • Virshup, Aaron M.; Contreras-García, Julia; Wipf, Peter
  • Journal of the American Chemical Society, Vol. 135, Issue 19
  • DOI: 10.1021/ja401184g

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules
journal, January 2018

  • Gómez-Bombarelli, Rafael; Wei, Jennifer N.; Duvenaud, David
  • ACS Central Science, Vol. 4, Issue 2
  • DOI: 10.1021/acscentsci.7b00572

Designing Molecules with Optimal Properties Using the Linear Combination of Atomic Potentials Approach in an AM1 Semiempirical Framework
journal, January 2007

  • Keinan, Shahar; Hu, Xiangqian; Beratan, David N.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 1
  • DOI: 10.1021/jp0646168

Genetic algorithms in chemistry
journal, July 2007


Additivity rules for the estimation of thermochemical properties
journal, June 1969

  • Benson, Sidney W.; Cruickshank, F. R.; Golden, D. M.
  • Chemical Reviews, Vol. 69, Issue 3
  • DOI: 10.1021/cr60259a002

Quantitative structure–property relationship modeling of ruthenium sensitizers for solar cells applications: novel tools for designing promising candidates
journal, January 2015

  • Tortorella, Sara; Marotta, Gabriele; Cruciani, Gabriele
  • RSC Advances, Vol. 5, Issue 30
  • DOI: 10.1039/C5RA01906K

Gradient‐driven molecule construction: An inverse approach applied to the design of small‐molecule fixating catalysts
journal, April 2014

  • Weymuth, Thomas; Reiher, Markus
  • International Journal of Quantum Chemistry, Vol. 114, Issue 13
  • DOI: 10.1002/qua.24686

QSAR and 3D QSAR in drug design Part 1: methodology
journal, November 1997


Accelerated DFT-Based Design of Materials for Ammonia Storage
journal, June 2015


Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Resolving Transition Metal Chemical Space: Feature Selection for Machine Learning and Structure–Property Relationships
journal, November 2017

  • Janet, Jon Paul; Kulik, Heather J.
  • The Journal of Physical Chemistry A, Vol. 121, Issue 46
  • DOI: 10.1021/acs.jpca.7b08750

Accelerating materials property predictions using machine learning
journal, September 2013

  • Pilania, Ghanshyam; Wang, Chenchen; Jiang, Xun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02810

An Evolutionary Algorithm for de Novo Optimization of Functional Transition Metal Compounds
journal, May 2012

  • Chu, Yunhan; Heyndrickx, Wouter; Occhipinti, Giovanni
  • Journal of the American Chemical Society, Vol. 134, Issue 21
  • DOI: 10.1021/ja300865u

Molecular Similarity in Medicinal Chemistry: Miniperspective
journal, November 2013

  • Maggiora, Gerald; Vogt, Martin; Stumpfe, Dagmar
  • Journal of Medicinal Chemistry, Vol. 57, Issue 8
  • DOI: 10.1021/jm401411z

Reversible CO Scavenging via Adsorbate-Dependent Spin State Transitions in an Iron(II)–Triazolate Metal–Organic Framework
journal, April 2016

  • Reed, Douglas A.; Xiao, Dianne J.; Gonzalez, Miguel I.
  • Journal of the American Chemical Society, Vol. 138, Issue 17
  • DOI: 10.1021/jacs.6b00248

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid
journal, August 2011

  • Hachmann, Johannes; Olivares-Amaya, Roberto; Atahan-Evrenk, Sule
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 17
  • DOI: 10.1021/jz200866s

Quantum Chemistry for Solvated Molecules on Graphical Processing Units Using Polarizable Continuum Models
journal, June 2015

  • Liu, Fang; Luehr, Nathan; Kulik, Heather J.
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 7
  • DOI: 10.1021/acs.jctc.5b00370

Thermal and light-induced spin crossover in iron(II) complexes
journal, January 1990


Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach
journal, April 2015

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 5
  • DOI: 10.1021/acs.jctc.5b00099

Designing Molecules by Optimizing Potentials
journal, March 2006

  • Wang, Mingliang; Hu, Xiangqian; Beratan, David N.
  • Journal of the American Chemical Society, Vol. 128, Issue 10
  • DOI: 10.1021/ja0572046

Theoretical Study of the Fe(phen) 2 (NCS) 2 Spin-Crossover Complex with Reparametrized Density Functionals
journal, December 2002


Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics
journal, August 2009

  • Ufimtsev, Ivan S.; Martinez, Todd J.
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 10
  • DOI: 10.1021/ct9003004

Material discovery by combining stochastic surface walking global optimization with a neural network
journal, January 2017

  • Huang, Si-Da; Shang, Cheng; Zhang, Xiao-Jie
  • Chemical Science, Vol. 8, Issue 9
  • DOI: 10.1039/C7SC01459G

Quantitative Structure–Property Relationship Modeling of Diverse Materials Properties
journal, January 2012

  • Le, Tu; Epa, V. Chandana; Burden, Frank R.
  • Chemical Reviews, Vol. 112, Issue 5
  • DOI: 10.1021/cr200066h

Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg
journal, January 1985

  • Hay, P. Jeffrey; Wadt, Willard R.
  • The Journal of Chemical Physics, Vol. 82, Issue 1
  • DOI: 10.1063/1.448799

Switching of Molecular Spin States in Inorganic Complexes by Temperature, Pressure, Magnetic Field and Light: Towards Molecular Devices: Switching of Molecular Spin States in Inorganic Complexes
journal, November 2004

  • Bousseksou, Azzedine; Molnár, Gábor; Matouzenko, Galina
  • European Journal of Inorganic Chemistry, Vol. 2004, Issue 22
  • DOI: 10.1002/ejic.200400571

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Identification and design principles of low hole effective mass p-type transparent conducting oxides
journal, August 2013

  • Hautier, Geoffroy; Miglio, Anna; Ceder, Gerbrand
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3292

The Catalyst Genome
journal, December 2012

  • Nørskov, Jens K.; Bligaard, Thomas
  • Angewandte Chemie International Edition, Vol. 52, Issue 3
  • DOI: 10.1002/anie.201208487

Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007


Comparison of density functionals for differences between the high- (T2g5) and low- (A1g1) spin states of iron(II) compounds. IV. Results for the ferrous complexes [Fe(L)(‘NHS4’)]
journal, June 2005

  • Ganzenmüller, Georg; Berkaïne, Nabil; Fouqueau, Antony
  • The Journal of Chemical Physics, Vol. 122, Issue 23
  • DOI: 10.1063/1.1927081

Tuning the Electronic Structure of Fe(II) Polypyridines via Donor Atom and Ligand Scaffold Modifications: A Computational Study
journal, August 2015


Spin Propensities of Octahedral Complexes From Density Functional Theory
journal, April 2015

  • Mortensen, Sara R.; Kepp, Kasper P.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 17
  • DOI: 10.1021/acs.jpca.5b01626

Representation of compounds for machine-learning prediction of physical properties
journal, April 2017


Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies
journal, July 2013

  • Hansen, Katja; Montavon, Grégoire; Biegler, Franziska
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 8
  • DOI: 10.1021/ct400195d

Simulated evolution of fluorophores for light emitting diodes
journal, March 2015

  • Shu, Yinan; Levine, Benjamin G.
  • The Journal of Chemical Physics, Vol. 142, Issue 10
  • DOI: 10.1063/1.4914294

A high-throughput infrastructure for density functional theory calculations
journal, June 2011


Chemical space
journal, December 2004

  • Kirkpatrick, Peter; Ellis, Clare
  • Nature, Vol. 432, Issue 7019
  • DOI: 10.1038/432823a

Guest Tunable Structure and Spin Crossover Properties in a Nanoporous Coordination Framework Material
journal, September 2009

  • Neville, Suzanne M.; Halder, Gregory J.; Chapman, Karena W.
  • Journal of the American Chemical Society, Vol. 131, Issue 34
  • DOI: 10.1021/ja905360g

Assessment of density functional theory for iron(II) molecules across the spin-crossover transition
journal, September 2012

  • Droghetti, A.; Alfè, D.; Sanvito, S.
  • The Journal of Chemical Physics, Vol. 137, Issue 12
  • DOI: 10.1063/1.4752411

Artificial evolution of coumarin dyes for dye sensitized solar cells
journal, January 2015

  • Venkatraman, Vishwesh; Abburu, Sailesh; Alsberg, Bjørn Kåre
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 41
  • DOI: 10.1039/C5CP04624F

Chemical transferability of functional groups follows from the nearsightedness of electronic matter
journal, October 2017

  • Fias, Stijn; Heidar-Zadeh, Farnaz; Geerlings, Paul
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 44
  • DOI: 10.1073/pnas.1615053114

Feature engineering of machine-learning chemisorption models for catalyst design
journal, February 2017


Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach
journal, August 2016

  • Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.
  • Nature Materials, Vol. 15, Issue 10
  • DOI: 10.1038/nmat4717

Molecular Design of Porphyrin-Based Nonlinear Optical Materials
journal, November 2008

  • Keinan, Shahar; Therien, Michael J.; Beratan, David N.
  • The Journal of Physical Chemistry A, Vol. 112, Issue 47
  • DOI: 10.1021/jp806351d

Enhanced Cooperativity in Supported Spin-Crossover Metal–Organic Frameworks
journal, July 2017

  • Groizard, Thomas; Papior, Nick; Le Guennic, Boris
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 14
  • DOI: 10.1021/acs.jpclett.7b01248

Low-Spin versus High-Spin Ground State in Pseudo-Octahedral Iron Complexes
journal, May 2012

  • Bowman, David N.; Jakubikova, Elena
  • Inorganic Chemistry, Vol. 51, Issue 11
  • DOI: 10.1021/ic202344w

Molecular spin crossover phenomenon: recent achievements and prospects
journal, January 2011

  • Bousseksou, Azzedine; Molnár, Gábor; Salmon, Lionel
  • Chemical Society Reviews, Vol. 40, Issue 6
  • DOI: 10.1039/c1cs15042a

Quantum Chemistry on Graphical Processing Units. 2. Direct Self-Consistent-Field Implementation
journal, March 2009

  • Ufimtsev, Ivan S.; Martinez, Todd J.
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 4
  • DOI: 10.1021/ct800526s

Structure:function relationships in molecular spin-crossover complexes
journal, January 2011


A Shape Index from Molecular Graphs
journal, January 1985


Towards the computational design of solid catalysts
journal, April 2009

  • Nørskov, J.; Bligaard, T.; Rossmeisl, J.
  • Nature Chemistry, Vol. 1, Issue 1, p. 37-46
  • DOI: 10.1038/nchem.121

Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity
journal, October 2016

  • Huang, Bing; von Lilienfeld, O. Anatole
  • The Journal of Chemical Physics, Vol. 145, Issue 16
  • DOI: 10.1063/1.4964627

Quantum chemistry structures and properties of 134 kilo molecules
journal, August 2014

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Scientific Data, Vol. 1, Issue 1
  • DOI: 10.1038/sdata.2014.22

Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields
journal, November 1994

  • Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.
  • The Journal of Physical Chemistry, Vol. 98, Issue 45, p. 11623-11627
  • DOI: 10.1021/j100096a001

Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory
journal, June 2010

  • Hautier, Geoffroy; Fischer, Christopher C.; Jain, Anubhav
  • Chemistry of Materials, Vol. 22, Issue 12
  • DOI: 10.1021/cm100795d

Combinatorial screening for new materials in unconstrained composition space with machine learning
journal, March 2014


3D-QSAR as a Tool for Understanding and Improving Single-Site Polymerization Catalysts. A Review
journal, June 2014

  • Cruz, Victor L.; Martinez, Sonia; Ramos, Javier
  • Organometallics, Vol. 33, Issue 12
  • DOI: 10.1021/om400721v

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.