skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic vortex nucleation modes in static magnetic fields

Abstract

The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal the details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [2];  [1];  [1];  [1]
  1. Brno Univ. of Technology, Brno (Czech Republic)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DGIST, Daegu (Korea)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1421813
Alternate Identifier(s):
OSTI ID: 1396307
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
AIP Advances
Additional Journal Information:
Journal Volume: 7; Journal Issue: 10; Journal ID: ISSN 2158-3226
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Vanatka, Marek, Urbanek, Michal, Jira, Roman, Flajsman, Lukas, Dhankhar, Meena, Im, Mi -Young, Michalicka, Jan, Uhlir, Vojtech, and Sikola, Tomas. Magnetic vortex nucleation modes in static magnetic fields. United States: N. p., 2017. Web. doi:10.1063/1.5006235.
Vanatka, Marek, Urbanek, Michal, Jira, Roman, Flajsman, Lukas, Dhankhar, Meena, Im, Mi -Young, Michalicka, Jan, Uhlir, Vojtech, & Sikola, Tomas. Magnetic vortex nucleation modes in static magnetic fields. United States. doi:10.1063/1.5006235.
Vanatka, Marek, Urbanek, Michal, Jira, Roman, Flajsman, Lukas, Dhankhar, Meena, Im, Mi -Young, Michalicka, Jan, Uhlir, Vojtech, and Sikola, Tomas. Tue . "Magnetic vortex nucleation modes in static magnetic fields". United States. doi:10.1063/1.5006235. https://www.osti.gov/servlets/purl/1421813.
@article{osti_1421813,
title = {Magnetic vortex nucleation modes in static magnetic fields},
author = {Vanatka, Marek and Urbanek, Michal and Jira, Roman and Flajsman, Lukas and Dhankhar, Meena and Im, Mi -Young and Michalicka, Jan and Uhlir, Vojtech and Sikola, Tomas},
abstractNote = {The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal the details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.},
doi = {10.1063/1.5006235},
journal = {AIP Advances},
number = 10,
volume = 7,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Stability of magnetic vortices in flat submicron permalloy cylinders
journal, August 2002

  • Schneider, M.; Hoffmann, H.; Otto, S.
  • Journal of Applied Physics, Vol. 92, Issue 3
  • DOI: 10.1063/1.1490623

Controlling vortex chirality and polarity by geometry in magnetic nanodots
journal, January 2014

  • Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles
  • Applied Physics Letters, Vol. 104, Issue 1
  • DOI: 10.1063/1.4861423

Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk
journal, January 2012

  • Im, Mi-Young; Fischer, Peter; Yamada, Keisuke
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1978

Logic Operations Based on Magnetic-Vortex-State Networks
journal, May 2012

  • Jung, Hyunsung; Choi, Youn-Seok; Lee, Ki-Suk
  • ACS Nano, Vol. 6, Issue 5
  • DOI: 10.1021/nn3000143

Soliton-pair dynamics in patterned ferromagnetic ellipses
journal, December 2005

  • Buchanan, Kristen S.; Roy, Pierre E.; Grimsditch, Marcos
  • Nature Physics, Vol. 1, Issue 3
  • DOI: 10.1038/nphys173

Selective mode excitation in three-chained magnetic vortices
journal, May 2015

  • Hasegawa, Norinobu; Sugimoto, Satoshi; Fujimori, Hiroaki
  • Applied Physics Express, Vol. 8, Issue 6
  • DOI: 10.7567/apex.8.063005

Magnetic vortex core reversal by excitation of spin waves
journal, April 2011

  • Kammerer, Matthias; Weigand, Markus; Curcic, Michael
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1277

MALTS: A Tool to Simulate Lorentz Transmission Electron Microscopy From Micromagnetic Simulations
journal, August 2013

  • Walton, Stephanie K.; Zeissler, Katharina; Branford, Will R.
  • IEEE Transactions on Magnetics, Vol. 49, Issue 8
  • DOI: 10.1109/tmag.2013.2247410

Simultaneous control of vortex polarity and chirality in thickness-modulated [Co/Pd] n /Ti/Ni 80 Fe 20 disks
journal, October 2014

  • Shimon, G.; Ravichandar, V.; Adeyeye, A. O.
  • Applied Physics Letters, Vol. 105, Issue 15
  • DOI: 10.1063/1.4897954

Stochastic formation of magnetic vortex structures in asymmetric disks triggered by chaotic dynamics
journal, December 2014

  • Im, Mi-Young; Lee, Ki-Suk; Vogel, Andreas
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6620

Temperature dependent nucleation and annihilation of individual magnetic vortices
journal, March 2010

  • Mihajlović, G.; Patrick, M. S.; Pearson, J. E.
  • Applied Physics Letters, Vol. 96, Issue 11
  • DOI: 10.1063/1.3360841

Field evolution of magnetic vortex state in ferromagnetic disks
journal, June 2001

  • Guslienko, K. Yu.; Novosad, V.; Otani, Y.
  • Applied Physics Letters, Vol. 78, Issue 24
  • DOI: 10.1063/1.1377850

Magnetic vortex cores as tunable spin-wave emitters
journal, July 2016

  • Wintz, Sebastian; Tiberkevich, Vasil; Weigand, Markus
  • Nature Nanotechnology, Vol. 11, Issue 11
  • DOI: 10.1038/nnano.2016.117

Nucleation and annihilation of magnetic vortices in sub-micron permalloy dots
journal, July 2001

  • Novosad, V.; Guslienko, K. Yu.; Shima, H.
  • IEEE Transactions on Magnetics, Vol. 37, Issue 4
  • DOI: 10.1109/20.951062

Current controlled random-access memory based on magnetic vortex handedness
journal, October 2008

  • Bohlens, Stellan; Krüger, Benjamin; Drews, André
  • Applied Physics Letters, Vol. 93, Issue 14
  • DOI: 10.1063/1.2998584

Symmetry breaking of magnetic vortices before annihilation
journal, September 2014

  • Pulecio, J. F.; Pollard, S. D.; Warnicke, P.
  • Applied Physics Letters, Vol. 105, Issue 13
  • DOI: 10.1063/1.4893422

Vortex nucleation in submicrometer ferromagnetic disks
journal, June 2003

  • Rahm, M.; Schneider, M.; Biberger, J.
  • Applied Physics Letters, Vol. 82, Issue 23
  • DOI: 10.1063/1.1581363

Probing magnetization reversal process in ferromagnetic disk by superconductor-ferromagnet junction
journal, July 2010

  • Bakaul, S. R.; Wu, B. L.; Han, G. C.
  • Applied Physics Letters, Vol. 97, Issue 4
  • DOI: 10.1063/1.3463474

Dynamic switching of the spin circulation in tapered magnetic nanodisks
journal, April 2013

  • Uhlíř, V.; Urbánek, M.; Hladík, L.
  • Nature Nanotechnology, Vol. 8, Issue 5
  • DOI: 10.1038/nnano.2013.66

Anisotropic magnetoresistance effect in sub-micron nickel disks
journal, May 2015

  • Wren, T.; Kazakova, O.
  • Journal of Applied Physics, Vol. 117, Issue 17
  • DOI: 10.1063/1.4918967

Magnetic Vortex Core Observation in Circular Dots of Permalloy
journal, August 2000


Magnetic vortex core reversal by excitation with short bursts of an alternating field
journal, November 2006

  • Van Waeyenberge, B.; Puzic, A.; Stoll, H.
  • Nature, Vol. 444, Issue 7118
  • DOI: 10.1038/nature05240

Ultrafast Nanomagnetic Toggle Switching of Vortex Cores
journal, March 2007


Temperature dependent switching properties of patterned 200 nm Ni81Fe19 elements
journal, December 2001

  • Li, Jian; Shi, Jing; Tehrani, Saied
  • Applied Physics Letters, Vol. 79, Issue 23
  • DOI: 10.1063/1.1424470