skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strong size-dependent stress relaxation in electrospun polymer nanofibers

Abstract

Here, electrospun polymer nanofibers have garnered significant interest due to their strong size-dependent material properties, such as tensile moduli, strength, toughness, and glass transition temperatures. These properties are closely correlated with polymer chain dynamics. In most applications, polymers usually exhibit viscoelastic behaviors such as stress relaxation and creep, which are also determined by the motion of polymer chains. However, the size-dependent viscoelasticity has not been studied previously in polymer nanofibers. Here, we report the first experimental evidence of significant size-dependent stress relaxation in electrospun Nylon-11 nanofibers as well as size-dependent viscosity of the confined amorphous regions. In conjunction with the dramatically increasing stiffness of nano-scaled fibers, this strong relaxation enables size-tunable properties which break the traditional damping-stiffness tradeoff, qualifying electrospun nanofibers as a promising set of size-tunable materials with an unusual and highly desirable combination of simultaneously high stiffness and large mechanical energy dissipation.

Authors:
 [1];  [2];  [1];  [1]
  1. Univ. of California, San Diego, La Jolla, CA (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1421770
Alternate Identifier(s):
OSTI ID: 1361718
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 121; Journal Issue: 1; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Wingert, Matthew C., Jiang, Zhang, Chen, Renkun, and Cai, Shengqiang. Strong size-dependent stress relaxation in electrospun polymer nanofibers. United States: N. p., 2017. Web. https://doi.org/10.1063/1.4973486.
Wingert, Matthew C., Jiang, Zhang, Chen, Renkun, & Cai, Shengqiang. Strong size-dependent stress relaxation in electrospun polymer nanofibers. United States. https://doi.org/10.1063/1.4973486
Wingert, Matthew C., Jiang, Zhang, Chen, Renkun, and Cai, Shengqiang. Wed . "Strong size-dependent stress relaxation in electrospun polymer nanofibers". United States. https://doi.org/10.1063/1.4973486. https://www.osti.gov/servlets/purl/1421770.
@article{osti_1421770,
title = {Strong size-dependent stress relaxation in electrospun polymer nanofibers},
author = {Wingert, Matthew C. and Jiang, Zhang and Chen, Renkun and Cai, Shengqiang},
abstractNote = {Here, electrospun polymer nanofibers have garnered significant interest due to their strong size-dependent material properties, such as tensile moduli, strength, toughness, and glass transition temperatures. These properties are closely correlated with polymer chain dynamics. In most applications, polymers usually exhibit viscoelastic behaviors such as stress relaxation and creep, which are also determined by the motion of polymer chains. However, the size-dependent viscoelasticity has not been studied previously in polymer nanofibers. Here, we report the first experimental evidence of significant size-dependent stress relaxation in electrospun Nylon-11 nanofibers as well as size-dependent viscosity of the confined amorphous regions. In conjunction with the dramatically increasing stiffness of nano-scaled fibers, this strong relaxation enables size-tunable properties which break the traditional damping-stiffness tradeoff, qualifying electrospun nanofibers as a promising set of size-tunable materials with an unusual and highly desirable combination of simultaneously high stiffness and large mechanical energy dissipation.},
doi = {10.1063/1.4973486},
journal = {Journal of Applied Physics},
number = 1,
volume = 121,
place = {United States},
year = {2017},
month = {1}
}

Works referenced in this record:

Diameter-Dependent Modulus and Melting Behavior in Electrospun Semicrystalline Polymer Fibers
journal, June 2011

  • Liu, Ying; Chen, Shuang; Zussman, Eyal
  • Macromolecules, Vol. 44, Issue 11
  • DOI: 10.1021/ma200262z

Nanomechanical thermal analysis of electrospun polymer fibers
journal, November 2008

  • Wang, Wei; Bushby, Andrew J.; Barber, Asa H.
  • Applied Physics Letters, Vol. 93, Issue 20
  • DOI: 10.1063/1.3033222

Size dependent mechanical properties of electrospun polymer fibers from a composite structure
journal, October 2012


Sub-amorphous Thermal Conductivity in Ultrathin Crystalline Silicon Nanotubes
journal, March 2015


High thermal conductivity of chain-oriented amorphous polythiophene
journal, March 2014

  • Singh, Virendra; Bougher, Thomas L.; Weathers, Annie
  • Nature Nanotechnology, Vol. 9, Issue 5
  • DOI: 10.1038/nnano.2014.44

Calibration of rectangular atomic force microscope cantilevers
journal, October 1999

  • Sader, John E.; Chon, James W. M.; Mulvaney, Paul
  • Review of Scientific Instruments, Vol. 70, Issue 10
  • DOI: 10.1063/1.1150021

Elastic modulus and thermal conductivity of ultradrawn polyethylene
journal, December 1999


Mechanical properties of single electrospun drug-encapsulated nanofibres
journal, July 2006


Composite Materials with Viscoelastic Stiffness Greater Than Diamond
journal, February 2007


Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency
journal, February 2010

  • Chang, Chieh; Tran, Van H.; Wang, Junbo
  • Nano Letters, Vol. 10, Issue 2, p. 726-731
  • DOI: 10.1021/nl9040719

Molecular Orientation in Electrospun Fibers: From Mats to Single Fibers
journal, November 2013

  • Richard-Lacroix, Marie; Pellerin, Christian
  • Macromolecules, Vol. 46, Issue 24
  • DOI: 10.1021/ma401681m

Elastic Modulus of Polypyrrole Nanotubes
journal, August 2000

  • Cuenot, Stéphane; Demoustier-Champagne, Sophie; Nysten, Bernard
  • Physical Review Letters, Vol. 85, Issue 8
  • DOI: 10.1103/PhysRevLett.85.1690

Structure-induced enhancement of thermal conductivities in electrospun polymer nanofibers
journal, January 2014

  • Zhong, Zhenxin; Wingert, Matthew C.; Strzalka, Joseph
  • Nanoscale, Vol. 6, Issue 14
  • DOI: 10.1039/c4nr00547c

MATERIAL SCIENCE: Spinning Continuous Fibers for Nanotechnology
journal, June 2004


Nanoindentation studies on Nylon 11/clay nanocomposites
journal, June 2006


Do surface effects explain the unique elasticity of polymer nanofibers?
journal, September 2011


A review on polymer nanofibers by electrospinning and their applications in nanocomposites
journal, November 2003

  • Huang, Zheng-Ming; Zhang, Y.-Z.; Kotaki, M.
  • Composites Science and Technology, Vol. 63, Issue 15, p. 2223-2253
  • DOI: 10.1016/S0266-3538(03)00178-7

Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering
journal, November 2006


Confinement mechanism of electrospun polymer nanofiber reinforcement
journal, January 2013

  • Arinstein, Arkadii
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 51, Issue 9
  • DOI: 10.1002/polb.23246

Effect of supramolecular structure on polymer nanofibre elasticity
journal, January 2007

  • Arinstein, Arkadii; Burman, Michael; Gendelman, Oleg
  • Nature Nanotechnology, Vol. 2, Issue 1
  • DOI: 10.1038/nnano.2006.172

Polymer nanofibers assembled by electrospinning
journal, March 2003


Tensile deformation of electrospun nylon-6,6 nanofibers
journal, January 2006

  • Zussman, E.; Burman, M.; Yarin, A. L.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 44, Issue 10
  • DOI: 10.1002/polb.20803

Electrospun polymer nanofiber sensors
journal, September 2005


The conflicts between strength and toughness
journal, October 2011


Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy
journal, May 2010

  • Hansen, Benjamin J.; Liu, Ying; Yang, Rusen
  • ACS Nano, Vol. 4, Issue 7
  • DOI: 10.1021/nn100845b

Simultaneously Strong and Tough Ultrafine Continuous Nanofibers
journal, March 2013

  • Papkov, Dimitry; Zou, Yan; Andalib, Mohammad Nahid
  • ACS Nano, Vol. 7, Issue 4
  • DOI: 10.1021/nn400028p

Measurement of size-dependent glass transition temperature in electrospun polymer fibers using AFM nanomechanical testing
journal, December 2011

  • Wang, Wei; Barber, Asa H.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 50, Issue 8
  • DOI: 10.1002/polb.23030

Piezoelectric nanofibers for energy scavenging applications
journal, May 2012


Fabrication of Conductive Polymer-Based Nanofiber Scaffolds for Tissue Engineering Applications
journal, October 2014

  • Gu, Bon Kang; Kim, Min Sup; Kang, Chang Mo
  • Journal of Nanoscience and Nanotechnology, Vol. 14, Issue 10
  • DOI: 10.1166/jnn.2014.9575

Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review
journal, May 2006


Low-voltage, high-resolution scanning electron microscopy: a new characterization technique for polymer morphology
journal, April 1995


Fracture mechanics of polymers
journal, March 1977


Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties
journal, May 2010


Structure and Nanomechanical Characterization of Electrospun PS/Clay Nanocomposite Fibers
journal, January 2006

  • Ji, Yuan; Li, Bingquan; Ge, Shouren
  • Langmuir, Vol. 22, Issue 3
  • DOI: 10.1021/la0525022

Confinement-induced super strong PS/MWNT composite nanofibers
journal, December 2008


Nylon 11/silica nanocomposite coatings applied by the HVOF process. II. Mechanical and barrier properties
journal, January 2000


Polyethylene nanofibres with very high thermal conductivities
journal, March 2010

  • Shen, Sheng; Henry, Asegun; Tong, Jonathan
  • Nature Nanotechnology, Vol. 5, Issue 4
  • DOI: 10.1038/nnano.2010.27

Free flight of an oscillated string pendulum as a tool for the mechanical characterization of an individual polymer nanofiber
journal, November 2008

  • Burman, Michael; Arinstein, Arkadii; Zussman, Eyal
  • Applied Physics Letters, Vol. 93, Issue 19
  • DOI: 10.1063/1.3000016

High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene)
journal, March 2013

  • Persano, Luana; Dagdeviren, Canan; Su, Yewang
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2639

Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers
journal, April 2008

  • Lim, C. T.; Tan, E. P. S.; Ng, S. Y.
  • Applied Physics Letters, Vol. 92, Issue 14
  • DOI: 10.1063/1.2857478

Time and strain rate dependent mechanical behavior of individual polymeric nanofibers
journal, January 2014

  • Naraghi, Mohammad; Kolluru, Pavan V.; Chasiotis, Ioannis
  • Journal of the Mechanics and Physics of Solids, Vol. 62
  • DOI: 10.1016/j.jmps.2013.10.006

Spring constant calibration of atomic force microscope cantilevers of arbitrary shape
journal, October 2012

  • Sader, John E.; Sanelli, Julian A.; Adamson, Brian D.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4757398

Partial Disentanglement in Continuous Polystyrene Electrospun Fibers
journal, December 2014

  • Richard-Lacroix, Marie; Pellerin, Christian
  • Macromolecules, Vol. 48, Issue 1
  • DOI: 10.1021/ma502282t

Rupture of rubber. I. Characteristic energy for tearing
journal, March 1953


Shifting of the melting point for semi-crystalline polymer nanofibers
journal, February 2011


Mechanical Properties of Vapor−Liquid−Solid Synthesized Silicon Nanowires
journal, November 2009

  • Zhu, Yong; Xu, Feng; Qin, Qingquan
  • Nano Letters, Vol. 9, Issue 11
  • DOI: 10.1021/nl902132w

    Works referencing / citing this record:

    Thermal transport in electrospun vinyl polymer nanofibers: effects of molecular weight and side groups
    journal, January 2018

    • Zhang, Yin; Zhang, Xin; Yang, Lin
    • Soft Matter, Vol. 14, Issue 47
    • DOI: 10.1039/c8sm01696h

    High thermal conductivity and superior thermal stability of amorphous PMDA/ODA nanofiber
    journal, May 2018

    • Dong, Lan; Xu, Xiangfan; Li, Baowen
    • Applied Physics Letters, Vol. 112, Issue 22
    • DOI: 10.1063/1.5031216