DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Efficient Capture of Perrhenate and Pertechnetate by a Mesoporous Zr Metal–Organic Framework and Examination of Anion Binding Motifs

Abstract

At the Hanford Site in southeastern Washington state, the U.S. Department of Energy intends to treat 56 million gallons of legacy nuclear waste by encasing it in borosilicate glass via vitrification. This process ineffectively captures radioactive pertechnetate (TcO4–) because of the ion’s volatility, thereby requiring a different remediation method for this long-lived (t1/2 = 2.1 × 105 years), environmentally mobile species. Currently available sorbents lack the desired combination of high uptake capacity, fast kinetics, and selectivity. Here, we evaluate the ability of the chemically and thermally robust Zr6-based metal–organic framework (MOF), NU-1000, to capture perrhenate (ReO4–), a pertechnetate simulant, and pertechnetate. Our material exhibits an excellent perrhenate uptake capacity of 210 mg/g, reaches saturation within 5 min, and maintains perrhenate uptake in the presence of competing anions. Additionally, experiments with pertechnetate confirm perrhenate is a suitable surrogate. Single-crystal X-ray diffraction indicates both chelating and nonchelating perrhenate binding motifs are present in both the small pore and the mesopore of NU-1000. Postadsorption diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) further elucidates the uptake mechanism and powder X-ray diffraction (PXRD) and Brunauer–Emmett–Teller (BET) surface area analysis confirm the retention of crystallinity and porosity of NU-1000 throughout adsorption.

Authors:
 [1];  [1];  [1];  [1];  [2];  [2];  [2];  [3]
  1. Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry
  2. Soochow Univ., Suzhou (China). School of Radiological and Interdisciplinary Sciences (RAD-X); Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou (China)
  3. Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; King Abdulaziz Univ., Jeddah (Saudi Arabia). Dept. of Chemistry
Publication Date:
Research Org.:
Northwestern Univ., Evanston, IL (United States). Actinide Center of Excellence
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); National Natural Science Foundation of China (NSFC)
OSTI Identifier:
1420780
Grant/Contract Number:  
NA0003763
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 4; Related Information: The Supporting Information is available on the ACS Publications website at DOI: 10.1021/acs.chemmater.7b04619.Adsorption capacity data, PXRD patterns, nitrogen adsorption isotherms, and DRIFTS spectra (PDF)Crystallographic data (TXT); Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; metal-organic framework; capture; perrhenate; pertechnetate

Citation Formats

Drout, Riki J., Otake, Kenichi, Howarth, Ashlee J., Islamoglu, Timur, Zhu, Lin, Xiao, Chengliang, Wang, Shuao, and Farha, Omar K. Efficient Capture of Perrhenate and Pertechnetate by a Mesoporous Zr Metal–Organic Framework and Examination of Anion Binding Motifs. United States: N. p., 2018. Web. doi:10.1021/acs.chemmater.7b04619.
Drout, Riki J., Otake, Kenichi, Howarth, Ashlee J., Islamoglu, Timur, Zhu, Lin, Xiao, Chengliang, Wang, Shuao, & Farha, Omar K. Efficient Capture of Perrhenate and Pertechnetate by a Mesoporous Zr Metal–Organic Framework and Examination of Anion Binding Motifs. United States. https://doi.org/10.1021/acs.chemmater.7b04619
Drout, Riki J., Otake, Kenichi, Howarth, Ashlee J., Islamoglu, Timur, Zhu, Lin, Xiao, Chengliang, Wang, Shuao, and Farha, Omar K. Wed . "Efficient Capture of Perrhenate and Pertechnetate by a Mesoporous Zr Metal–Organic Framework and Examination of Anion Binding Motifs". United States. https://doi.org/10.1021/acs.chemmater.7b04619. https://www.osti.gov/servlets/purl/1420780.
@article{osti_1420780,
title = {Efficient Capture of Perrhenate and Pertechnetate by a Mesoporous Zr Metal–Organic Framework and Examination of Anion Binding Motifs},
author = {Drout, Riki J. and Otake, Kenichi and Howarth, Ashlee J. and Islamoglu, Timur and Zhu, Lin and Xiao, Chengliang and Wang, Shuao and Farha, Omar K.},
abstractNote = {At the Hanford Site in southeastern Washington state, the U.S. Department of Energy intends to treat 56 million gallons of legacy nuclear waste by encasing it in borosilicate glass via vitrification. This process ineffectively captures radioactive pertechnetate (TcO4–) because of the ion’s volatility, thereby requiring a different remediation method for this long-lived (t1/2 = 2.1 × 105 years), environmentally mobile species. Currently available sorbents lack the desired combination of high uptake capacity, fast kinetics, and selectivity. Here, we evaluate the ability of the chemically and thermally robust Zr6-based metal–organic framework (MOF), NU-1000, to capture perrhenate (ReO4–), a pertechnetate simulant, and pertechnetate. Our material exhibits an excellent perrhenate uptake capacity of 210 mg/g, reaches saturation within 5 min, and maintains perrhenate uptake in the presence of competing anions. Additionally, experiments with pertechnetate confirm perrhenate is a suitable surrogate. Single-crystal X-ray diffraction indicates both chelating and nonchelating perrhenate binding motifs are present in both the small pore and the mesopore of NU-1000. Postadsorption diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) further elucidates the uptake mechanism and powder X-ray diffraction (PXRD) and Brunauer–Emmett–Teller (BET) surface area analysis confirm the retention of crystallinity and porosity of NU-1000 throughout adsorption.},
doi = {10.1021/acs.chemmater.7b04619},
journal = {Chemistry of Materials},
number = 4,
volume = 30,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 22 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The biogeochemistry of technetium: A review of the behavior of an artificial element in the natural environment
journal, October 2010

  • Icenhower, J. P.; Qafoku, N. P.; Zachara, J. M.
  • American Journal of Science, Vol. 310, Issue 8
  • DOI: 10.2475/08.2010.02

The nature of the volatile technetium species formed during vitrification of borosilicate glass
journal, May 2015

  • Childs, Bradley C.; Poineau, Frederic; Czerwinski, Kenneth R.
  • Journal of Radioanalytical and Nuclear Chemistry, Vol. 306, Issue 2
  • DOI: 10.1007/s10967-015-4203-5

Behavior of technetium in nuclear waste vitrification processes
journal, January 2015


Removal of TcO 4 ions from solution: materials and future outlook
journal, January 2016

  • Banerjee, Debasis; Kim, Dongsang; Schweiger, Michael J.
  • Chemical Society Reviews, Vol. 45, Issue 10
  • DOI: 10.1039/C5CS00330J

Development of Bifunctional Anion-Exchange Resins with Improved Selectivity and Sorptive Kinetics for Pertechnetate:  Batch-Equilibrium Experiments
journal, September 2000

  • Bonnesen, Peter V.; Brown, Gilbert M.; Alexandratos, Spiro D.
  • Environmental Science & Technology, Vol. 34, Issue 17
  • DOI: 10.1021/es990858s

Rhenium(VII) and technetium(VII) separation from aqueous solutions using a polyethylenimine–epichlorohydrin resin
journal, May 2015

  • Sarri, S.; Misaelides, P.; Zamboulis, D.
  • Journal of Radioanalytical and Nuclear Chemistry, Vol. 307, Issue 1
  • DOI: 10.1007/s10967-015-4213-3

Reductive Immobilization of Rhenium in Soil and Groundwater Using Pyrite Nanoparticles
journal, November 2015


Perrhenate sorption kinetics in zerovalent iron in high pH and nitrate media
journal, January 2017


Inorganic tin aluminophosphate nanocomposite for reductive separation of pertechnetate
journal, January 2016

  • Levitskaia, Tatiana G.; Chatterjee, Sayandev; Pence, Natasha K.
  • Environmental Science: Nano, Vol. 3, Issue 5
  • DOI: 10.1039/C6EN00130K

Reductive immobilization of Re(VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique
journal, November 2015


Removal of TcO 4 from Representative Nuclear Waste Streams with Layered Potassium Metal Sulfide Materials
journal, May 2016


Molecular recognition of pertechnetate and perrhenate
journal, January 2009

  • Katayev, Evgeny A.; Kolesnikov, Grigory V.; Sessler, Jonathan L.
  • Chemical Society Reviews, Vol. 38, Issue 6
  • DOI: 10.1039/b806468g

Removal of Pertechnetate-Related Oxyanions from Solution Using Functionalized Hierarchical Porous Frameworks
journal, October 2016

  • Banerjee, Debasis; Elsaidi, Sameh K.; Aguila, Briana
  • Chemistry - A European Journal, Vol. 22, Issue 49
  • DOI: 10.1002/chem.201603908

Zirconium-Based Metal–Organic Framework for Removal of Perrhenate from Water
journal, August 2016


Reversible, Selective Trapping of Perchlorate from Water in Record Capacity by a Cationic Metal–Organic Framework
journal, January 2016

  • Colinas, Ian R.; Silva, Rachel C.; Oliver, Scott R. J.
  • Environmental Science & Technology, Vol. 50, Issue 4
  • DOI: 10.1021/acs.est.5b03455

A Water-Stable Cationic Metal-Organic Framework as a Dual Adsorbent of Oxoanion Pollutants
journal, February 2016

  • Desai, Aamod V.; Manna, Biplab; Karmakar, Avishek
  • Angewandte Chemie International Edition, Vol. 55, Issue 27
  • DOI: 10.1002/anie.201600185

Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications
journal, February 2017


Efficient and Selective Uptake of TcO 4 by a Cationic Metal–Organic Framework Material with Open Ag + Sites
journal, March 2017

  • Sheng, Daopeng; Zhu, Lin; Xu, Chao
  • Environmental Science & Technology, Vol. 51, Issue 6
  • DOI: 10.1021/acs.est.7b00339

Identifying the Recognition Site for Selective Trapping of 99 TcO 4 in a Hydrolytically Stable and Radiation Resistant Cationic Metal–Organic Framework
journal, October 2017

  • Zhu, Lin; Sheng, Daopeng; Xu, Chao
  • Journal of the American Chemical Society, Vol. 139, Issue 42
  • DOI: 10.1021/jacs.7b08632

Application of layered double hydroxides for removal of oxyanions: A review
journal, March 2008


Design and synthesis of an exceptionally stable and highly porous metal-organic framework
journal, November 1999

  • Li, Hailian; Eddaoudi, Mohamed; M., O'Keeffe
  • Nature, Vol. 402, Issue 6759, p. 276-279
  • DOI: 10.1038/46248

Introduction to Metal–Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?
journal, August 2012

  • Farha, Omar K.; Eryazici, Ibrahim; Jeong, Nak Cheon
  • Journal of the American Chemical Society, Vol. 134, Issue 36, p. 15016-15021
  • DOI: 10.1021/ja3055639

Chemical, thermal and mechanical stabilities of metal–organic frameworks
journal, February 2016


Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage
journal, January 2002

  • Eddaoudi, Mohamed; Kim, Jaheon; Rosi, Nathaniel
  • Science, Vol. 295, Issue 5554, p. 469-472
  • DOI: 10.1126/science.1067208

Hydrogen storage in metal–organic frameworks
journal, January 2009

  • Murray, Leslie J.; Dincă, Mircea; Long, Jeffrey R.
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1294-1314
  • DOI: 10.1039/b802256a

Carbon Dioxide Capture in Metal–Organic Frameworks
journal, September 2011

  • Sumida, Kenji; Rogow, David L.; Mason, Jarad A.
  • Chemical Reviews, Vol. 112, Issue 2, p. 724-781
  • DOI: 10.1021/cr2003272

Selective gas adsorption and separation in metal–organic frameworks
journal, January 2009

  • Li, Jian-Rong; Kuppler, Ryan J.; Zhou, Hong-Cai
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1477-1504
  • DOI: 10.1039/b802426j

Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging
journal, December 2009

  • Horcajada, Patricia; Chalati, Tamim; Serre, Christian
  • Nature Materials, Vol. 9, Issue 2
  • DOI: 10.1038/nmat2608

Metal–Organic Framework Materials as Chemical Sensors
journal, September 2011

  • Kreno, Lauren E.; Leong, Kirsty; Farha, Omar K.
  • Chemical Reviews, Vol. 112, Issue 2, p. 1105-1125
  • DOI: 10.1021/cr200324t

Metal–organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents
journal, January 2017

  • Bobbitt, N. Scott; Mendonca, Matthew L.; Howarth, Ashlee J.
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/C7CS00108H

Metal–organic frameworks for applications in remediation of oxyanion/cation-contaminated water
journal, January 2015

  • Howarth, Ashlee J.; Liu, Yangyang; Hupp, Joseph T.
  • CrystEngComm, Vol. 17, Issue 38
  • DOI: 10.1039/C5CE01428J

The dual capture of As V and As III by UiO-66 and analogues
journal, January 2016

  • Audu, Cornelius O.; Nguyen, Huong Giang T.; Chang, Chih-Yi
  • Chemical Science, Vol. 7, Issue 10
  • DOI: 10.1039/C6SC00490C

Are Zr 6 -based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse
journal, January 2014

  • Mondloch, Joseph E.; Katz, Michael J.; Planas, Nora
  • Chemical Communications, Vol. 50, Issue 64
  • DOI: 10.1039/C4CC02401J

Water-Stable Zirconium-Based Metal-Organic Framework Material with High-Surface Area and Gas-Storage Capacities
journal, August 2014

  • Gutov, Oleksii V.; Bury, Wojciech; Gomez-Gualdron, Diego A.
  • Chemistry - A European Journal, Vol. 20, Issue 39
  • DOI: 10.1002/chem.201402895

High Efficiency Adsorption and Removal of Selenate and Selenite from Water Using Metal–Organic Frameworks
journal, June 2015

  • Howarth, Ashlee J.; Katz, Michael J.; Wang, Timothy C.
  • Journal of the American Chemical Society, Vol. 137, Issue 23
  • DOI: 10.1021/jacs.5b03904

Efficient extraction of sulfate from water using a Zr-metal–organic framework
journal, January 2016

  • Howarth, Ashlee J.; Wang, Timothy C.; Al-Juaid, Salih S.
  • Dalton Transactions, Vol. 45, Issue 1
  • DOI: 10.1039/C5DT04163E

Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework
journal, May 2013

  • Mondloch, Joseph E.; Bury, Wojciech; Fairen-Jimenez, David
  • Journal of the American Chemical Society, Vol. 135, Issue 28, p. 10294-10297
  • DOI: 10.1021/ja4050828

Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000
journal, December 2015

  • Wang, Timothy C.; Vermeulen, Nicolaas A.; Kim, In Soo
  • Nature Protocols, Vol. 11, Issue 1
  • DOI: 10.1038/nprot.2016.001

Crystal structure determination and refinement via SIR2014
journal, January 2015

  • Burla, Maria Cristina; Caliandro, Rocco; Carrozzini, Benedetta
  • Journal of Applied Crystallography, Vol. 48, Issue 1
  • DOI: 10.1107/S1600576715001132

Crystal structure refinement with SHELXL
journal, January 2015

  • Sheldrick, George M.
  • Acta Crystallographica Section C Structural Chemistry, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053229614024218

Docosahexaenoic Acid Ethyl Ester Enhances 6-Hydroxydopamine-Induced Neuronal Damage by Induction of Lipid Peroxidation in Mouse Striatum
journal, February 2009

  • Kabuto, Hideaki; Amakawa, Masao; Mankura, Mitsumasa
  • Neurochemical Research, Vol. 34, Issue 7
  • DOI: 10.1007/s11064-008-9909-0

Structure validation in chemical crystallography
journal, January 2009

  • Spek, Anthony L.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 65, Issue 2, p. 148-155
  • DOI: 10.1107/S090744490804362X

Organic modification of bentonite and its application for perrhenate (an analogue of pertechnetate) removal from aqueous solution
journal, May 2016

  • Yaming, Li; Mingliang, Bi; Zhipeng, Wang
  • Journal of the Taiwan Institute of Chemical Engineers, Vol. 62
  • DOI: 10.1016/j.jtice.2016.01.018

Synthesis and Host−Guest Properties of Multi-Crown Dendrimers towards Sodium Pertechnetate and Mercury(II) Chloride
journal, November 2001


A New Paradigm for Anion Trapping in High Capacity and Selectivity: Crystal-to-Crystal Transformation of Cationic Materials
journal, July 2011

  • Fei, Honghan; Bresler, Marc R.; Oliver, Scott R. J.
  • Journal of the American Chemical Society, Vol. 133, Issue 29
  • DOI: 10.1021/ja204577p

A new imidazolium-based polymeric ionic liquid gel with high adsorption capacity for perrhenate
journal, January 2016

  • Han, Dong; Li, Xingxiao; Peng, Jing
  • RSC Advances, Vol. 6, Issue 73
  • DOI: 10.1039/C6RA12239F

NDTB-1: A Supertetrahedral Cationic Framework That Removes TcO 4 from Solution
journal, February 2010

  • Wang, Shuao; Alekseev, Evgeny V.; Diwu, Juan
  • Angewandte Chemie International Edition, Vol. 49, Issue 6
  • DOI: 10.1002/anie.200906397

Selectivity, Kinetics, and Efficiency of Reversible Anion Exchange with TcO4− in a Supertetrahedral Cationic Framework
journal, March 2012

  • Wang, Shuao; Yu, Ping; Purse, Bryant A.
  • Advanced Functional Materials, Vol. 22, Issue 11
  • DOI: 10.1002/adfm.201103081

Removal of Pertechnetate from Simulated Nuclear Waste Streams Using Supported Zerovalent Iron
journal, November 2007

  • Darab, John G.; Amonette, Alexandra B.; Burke, Deborah S. D.
  • Chemistry of Materials, Vol. 19, Issue 23
  • DOI: 10.1021/cm0607379

Compositional and structural control on anion sorption capability of layered double hydroxides (LDHs)
journal, September 2006


Chalcogen-Based Aerogels As Sorbents for Radionuclide Remediation
journal, June 2013

  • Riley, Brian J.; Chun, Jaehun; Um, Wooyong
  • Environmental Science & Technology, Vol. 47, Issue 13
  • DOI: 10.1021/es400595z

Porous Zr2SC-carbon composite microspheres: Possible radiation tolerant sorbents and transmutation hosts for technetium-99
journal, March 2018


Detoxification of a Sulfur Mustard Simulant Using a BODIPY-Functionalized Zirconium-Based Metal–Organic Framework
journal, July 2017

  • Atilgan, Ahmet; Islamoglu, Timur; Howarth, Ashlee J.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 29
  • DOI: 10.1021/acsami.7b05494

Works referencing / citing this record:

Successful Decontamination of 99 TcO 4 in Groundwater at Legacy Nuclear Sites by a Cationic Metal-Organic Framework with Hydrophobic Pockets
journal, March 2019

  • Sheng, Daopeng; Zhu, Lin; Dai, Xing
  • Angewandte Chemie International Edition, Vol. 58, Issue 15
  • DOI: 10.1002/anie.201814640

Optimizing radionuclide sequestration in anion nanotraps with record pertechnetate sorption
journal, April 2019


Synthesis of novel nanomaterials and their application in efficient removal of radionuclides
journal, June 2019


Green applications of metal–organic frameworks
journal, January 2018

  • Ajoyan, Zvart; Marino, Paola; Howarth, Ashlee J.
  • CrystEngComm, Vol. 20, Issue 39
  • DOI: 10.1039/c8ce01002a

Exceptional TcO 4 sorption capacity and highly efficient ReO 4 luminescence sensing by Zr 4+ MOFs
journal, January 2018

  • Rapti, Sofia; Diamantis, Stavros A.; Dafnomili, Argyro
  • Journal of Materials Chemistry A, Vol. 6, Issue 42
  • DOI: 10.1039/c8ta07901c

Selective and efficient removal of perrhenate by an imidazolium based hexapodal receptor in water medium
journal, January 2020

  • Ghosh, Rajib; Ghosh, Tamal Kanti; Ghosh, Pradyut
  • Dalton Transactions, Vol. 49, Issue 10
  • DOI: 10.1039/d0dt00365d

A Ca 2+ MOF combining highly efficient sorption and capability for voltammetric determination of heavy metal ions in aqueous media
journal, January 2019

  • Pournara, Anastasia D.; Margariti, Antigoni; Tarlas, Georgios D.
  • Journal of Materials Chemistry A, Vol. 7, Issue 25
  • DOI: 10.1039/c9ta03337h

Single crystal structure and photocatalytic behavior of grafted uranyl on the Zr-node of a pyrene-based metal–organic framework
journal, January 2020

  • Knapp, Julia G.; Zhang, Xuan; Elkin, Tatyana
  • CrystEngComm, Vol. 22, Issue 11
  • DOI: 10.1039/c9ce02034a

Revisiting the structural homogeneity of NU-1000, a Zr-based metal–organic framework
journal, January 2018

  • Islamoglu, Timur; Otake, Ken-ichi; Li, Peng
  • CrystEngComm, Vol. 20, Issue 39
  • DOI: 10.1039/c8ce00455b

Efficient extraction of inorganic selenium from water by a Zr metal–organic framework: investigation of volumetric uptake capacity and binding motifs
journal, January 2018

  • Drout, Riki J.; Howarth, Ashlee J.; Otake, Ken-ichi
  • CrystEngComm, Vol. 20, Issue 40
  • DOI: 10.1039/c8ce00992a

High Uptake of ReO 4 and CO 2 Conversion by a Radiation-Resistant Thorium-Nickle [Th 48 Ni 6 ] Nanocage-Based Metal-Organic Framework
journal, March 2019

  • Xu, Hang; Cao, Chun-Shuai; Hu, Han-Shi
  • Angewandte Chemie International Edition, Vol. 58, Issue 18
  • DOI: 10.1002/anie.201901786