DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improved mechanical properties of thermoelectric (Bi 0.2 Sb 0.8 ) 2 Te 3 by nanostructuring

Abstract

Temperature-dependent strength of Bi-Sb-Te under uniaxial compression is investigated. Bi-Sb-Te samples were produced by three methods: vertical zone-melting, hot extrusion, and spark plasma sintering (SPS). For zone-melted and extruded samples, the brittle-ductile transition occurs over a temperature range of 200-350 °C. In nanostructured samples produced via SPS, the transition is observed in a narrower temperature range of 170-200 °C. At room temperature, the strength of the nanostructured samples is higher than that of zone-melted and extruded samples, but above 300 °C, all samples decrease to roughly the same strength.

Authors:
; ; ; ; ; ORCiD logo; ORCiD logo; ; ORCiD logo; ;
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1259979
Alternate Identifier(s):
OSTI ID: 1388404; OSTI ID: 1420528
Grant/Contract Number:  
SC0001299; FG02-09ER46577
Resource Type:
Published Article
Journal Name:
APL Materials
Additional Journal Information:
Journal Name: APL Materials Journal Volume: 4 Journal Issue: 10; Journal ID: ISSN 2166-532X
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Lavrentev, M. G., Osvenskii, V. B., Parkhomenko, Yu. N., Pivovarov, G. I., Sorokin, A. I., Bulat, L. P., Kim, H. -S., Witting, I. T., Snyder, G. J., Bublik, V. T., and Tabachkova, N. Yu. Improved mechanical properties of thermoelectric (Bi 0.2 Sb 0.8 ) 2 Te 3 by nanostructuring. United States: N. p., 2016. Web. doi:10.1063/1.4953173.
Lavrentev, M. G., Osvenskii, V. B., Parkhomenko, Yu. N., Pivovarov, G. I., Sorokin, A. I., Bulat, L. P., Kim, H. -S., Witting, I. T., Snyder, G. J., Bublik, V. T., & Tabachkova, N. Yu. Improved mechanical properties of thermoelectric (Bi 0.2 Sb 0.8 ) 2 Te 3 by nanostructuring. United States. https://doi.org/10.1063/1.4953173
Lavrentev, M. G., Osvenskii, V. B., Parkhomenko, Yu. N., Pivovarov, G. I., Sorokin, A. I., Bulat, L. P., Kim, H. -S., Witting, I. T., Snyder, G. J., Bublik, V. T., and Tabachkova, N. Yu. Sat . "Improved mechanical properties of thermoelectric (Bi 0.2 Sb 0.8 ) 2 Te 3 by nanostructuring". United States. https://doi.org/10.1063/1.4953173.
@article{osti_1259979,
title = {Improved mechanical properties of thermoelectric (Bi 0.2 Sb 0.8 ) 2 Te 3 by nanostructuring},
author = {Lavrentev, M. G. and Osvenskii, V. B. and Parkhomenko, Yu. N. and Pivovarov, G. I. and Sorokin, A. I. and Bulat, L. P. and Kim, H. -S. and Witting, I. T. and Snyder, G. J. and Bublik, V. T. and Tabachkova, N. Yu.},
abstractNote = {Temperature-dependent strength of Bi-Sb-Te under uniaxial compression is investigated. Bi-Sb-Te samples were produced by three methods: vertical zone-melting, hot extrusion, and spark plasma sintering (SPS). For zone-melted and extruded samples, the brittle-ductile transition occurs over a temperature range of 200-350 °C. In nanostructured samples produced via SPS, the transition is observed in a narrower temperature range of 170-200 °C. At room temperature, the strength of the nanostructured samples is higher than that of zone-melted and extruded samples, but above 300 °C, all samples decrease to roughly the same strength.},
doi = {10.1063/1.4953173},
journal = {APL Materials},
number = 10,
volume = 4,
place = {United States},
year = {Sat Oct 01 00:00:00 EDT 2016},
month = {Sat Oct 01 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1063/1.4953173

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Comparative study on size dependence of melting temperatures of pure metal and alloy nanoparticles
journal, July 2011

  • Chen, C. L.; Lee, J. -G.; Arakawa, K.
  • Applied Physics Letters, Vol. 99, Issue 1
  • DOI: 10.1063/1.3607957

p-Type Bismuth Telluride-Based Composite Thermoelectric Materials Produced by Mechanical Alloying and Hot Extrusion
journal, October 2012

  • Keshavarz, M. K.; Vasilevskiy, D.; Masut, R. A.
  • Journal of Electronic Materials, Vol. 42, Issue 7
  • DOI: 10.1007/s11664-012-2284-2

Bulk Nanostructured Polycrystalline p-Bi-Sb-Te Thermoelectrics Obtained by Mechanical Activation Method with Hot Pressing
journal, May 2010

  • Bulat, L. P.; Bublik, V. T.; Drabkin, I. A.
  • Journal of Electronic Materials, Vol. 39, Issue 9
  • DOI: 10.1007/s11664-010-1250-0

Quantitative Texture Analysis of Spark Plasma Textured n-Bi 2 Te 3
journal, May 2014

  • Lognoné, Quentin; Gascoin, Franck; Lebedev, Oleg I.
  • Journal of the American Ceramic Society, Vol. 97, Issue 7
  • DOI: 10.1111/jace.12970

Strength of nanostructures
journal, April 2009


Antisite defects in Sb2−xBixTe3 mixed crystals
journal, January 1988


Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin
journal, January 1925

  • Bridgman, P. W.
  • Proceedings of the American Academy of Arts and Sciences, Vol. 60, Issue 6
  • DOI: 10.2307/25130058

Stresses in Bi-Metal Thermostats
journal, September 1986


Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites
journal, February 2010

  • Sootsman, Joseph R.; He, Jiaqing; Dravid, Vinayak P.
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm9016672

High-Temperature Mechanical and Thermoelectric Properties of p-Type Bi0.5Sb1.5Te3 Commercial Zone Melting Ingots
journal, December 2013


Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


CXVII. A theory of work-hardening of metal crystals
journal, November 1952

  • Mott, N. F.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 43, Issue 346
  • DOI: 10.1080/14786441108521024

Structure and Transport Properties of Bulk Nanothermoelectrics Based on Bi x Sb2−x Te3 Fabricated by SPS Method
journal, March 2013

  • Bulat, L. P.; Drabkin, I. A.; Karatayev, V. V.
  • Journal of Electronic Materials, Vol. 42, Issue 7
  • DOI: 10.1007/s11664-013-2536-9

On the Tensile Behavior of High-Manganese Twinning-Induced Plasticity Steel
journal, October 2009

  • Kim, Jin-Kyung; Chen, Lei; Kim, Han-Soo
  • Metallurgical and Materials Transactions A, Vol. 40, Issue 13
  • DOI: 10.1007/s11661-009-9992-0

Hall-petch relation in nanocrystalline solids
journal, April 1991


The introduction of dislocations during the growth of floating-zone silicon crystals as a result of point defect condensation
journal, October 1975


The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical
journal, July 1934

  • Taylor, G. I.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 145, Issue 855
  • DOI: 10.1098/rspa.1934.0106

Theory of creep of germanium crystals
journal, January 1959


Pile-up based hall-petch relation for nanoscale materials
journal, May 1993


Structural mechanism of plastic deformation of nanomaterials with amorphous intergranular layers
journal, January 1995


The Influence of Anisotropy and Nanoparticle Size Distribution on the Lattice Thermal Conductivity and the Thermoelectric Figure of Merit of Nanostructured (Bi,Sb)2Te3
journal, January 2014

  • Bulat, L. P.; Drabkin, I. A.; Karatayev, V. V.
  • Journal of Electronic Materials, Vol. 43, Issue 6
  • DOI: 10.1007/s11664-014-2988-6

Dislocation Sources in Crystals
journal, October 1959


Assembly Bonded at the Ends: Could Thinner and Longer Legs Result in a Lower Thermal Stress in a Thermoelectric Module Design?
journal, September 2012

  • Suhir, E.; Shakouri, A.
  • Journal of Applied Mechanics, Vol. 79, Issue 6
  • DOI: 10.1115/1.4006597

Microstructure control and thermoelectric properties improvement to n-type bismuth telluride based materials by hot extrusion
journal, February 2007


Microhardness of nanocrystalline palladium and copper produced by inert-gas condensation
journal, December 1989


Thermal Expansion Studies of Selected High-Temperature Thermoelectric Materials
journal, March 2009

  • Ravi, Vilupanur; Firdosy, Samad; Caillat, Thierry
  • Journal of Electronic Materials, Vol. 38, Issue 7
  • DOI: 10.1007/s11664-009-0734-2

Mechanical properties of nanocrystalline materials
journal, May 2006


High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
journal, May 2008


Intergranular fracture in nanocrystalline metals
journal, August 2002


Plasticity and strength of micro- and nanocrystalline materials
journal, June 2007


Plastic deformation of nanocrystalline Cu and Cu–0.2 wt.% B
journal, May 1999

  • Suryanarayanan Iyer, R.; Frey, Claire A.; Sastry, S. M. L.
  • Materials Science and Engineering: A, Vol. 264, Issue 1-2
  • DOI: 10.1016/S0921-5093(98)01027-2

Plastic deformation of nanocrystalline materials
journal, January 1997


Works referencing / citing this record:

Nanomechanical and wettability properties of Bi2Te3 thin films: Effects of post-annealing
journal, May 2017

  • Jian, Sheng-Rui; Le, Phuoc Huu; Luo, Chih-Wei
  • Journal of Applied Physics, Vol. 121, Issue 17
  • DOI: 10.1063/1.4982911

Carbon-Based Materials for Thermoelectrics
journal, July 2018

  • Chakraborty, Pranay; Ma, Tengfei; Zahiri, Amir Hassan
  • Advances in Condensed Matter Physics, Vol. 2018
  • DOI: 10.1155/2018/3898479