skip to main content

DOE PAGESDOE PAGES

Title: An Aqueous Inorganic Polymer Binder for High Performance Lithium–Sulfur Batteries with Flame-Retardant Properties

Lithium–sulfur (Li–S) batteries are regarded as promising next-generation high energy density storage devices for both portable electronics and electric vehicles due to their high energy density, low cost, and environmental friendliness. However, there remain some issues yet to be fully addressed with the main challenges stemming from the ionically insulating nature of sulfur and the dissolution of polysulfides in electrolyte with subsequent parasitic reactions leading to low sulfur utilization and poor cycle life. The high flammability of sulfur is another serious safety concern which has hindered its further application. Herein, an aqueous inorganic polymer, ammonium polyphosphate (APP), has been developed as a novel multifunctional binder to address the above issues. The strong binding affinity of the main chain of APP with lithium polysulfides blocks diffusion of polysulfide anions and inhibits their shuttling effect. The coupling of APP with Li ion facilitates ion transfer and promotes the kinetics of the cathode reaction. Moreover, APP can serve as a flame retardant, thus significantly reducing the flammability of the sulfur cathode. In addition, the aqueous characteristic of the binder avoids the use of toxic organic solvents, thus significantly improving safety. As a result, a high rate capacity of 520 mAh g –1 atmore » 4 C and excellent cycling stability of ~0.038% capacity decay per cycle at 0.5 C for 400 cycles are achieved based on this binder. In conclusion, this work offers a feasible and effective strategy for employing APP as an efficient multifunctional binder toward building next-generation high energy density Li–S batteries.« less
Authors:
ORCiD logo [1] ; ORCiD logo [1] ;  [2] ;  [3] ;  [1] ; ORCiD logo [1] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1] ; ORCiD logo [1] ;  [1] ; ORCiD logo [1] ;  [1] ;  [1] ;  [2] ; ORCiD logo [4]
  1. Stanford Univ., Stanford, CA (United States)
  2. Beijing Univ. of Aeronautics and Astronautics, Beijing (P. R. China)
  3. Beijing Institute of Technology, Beijing (P. R. China)
  4. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Grant/Contract Number:
AC02-76SF00515; NCET-12-0033; 11404017
Type:
Published Article
Journal Name:
ACS Central Science
Additional Journal Information:
Journal Volume: 4; Journal Issue: 2; Journal ID: ISSN 2374-7943
Publisher:
American Chemical Society (ACS)
Research Org:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE
OSTI Identifier:
1420454
Alternate Identifier(s):
OSTI ID: 1437553