DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Quaternary Sodium Superionic Conductor - Na10.8Sn1.9PS11.8

Abstract

Sulfide-based Na-ion conductors are promising candidates as solid-state electrolytes (SSEs) for fabrication of solid-state Na-ion batteries (NIBs) because of their high ionic conductivities and low grain boundary resistance. Currently, most of the sulfide-based Na-ion conductors with high conductivities are focused on Na3PS4 phases and its derivatives. It is desirable to develop Na-ion conductors with new composition and crystal structure to achieve superior ionic conductivities. Here we report a new quaternary Na-ion conductor, Na10.8Sn1.9PS11.8, exhibiting a high ionic conductivity of 0.67 mS cm–1 at 25 °C. This high ionic conductivity originates from the presence of a large number of intrinsic Na-vacancies and three-dimensional Na-ion conduction pathways, which has been confirmed by single-crystal X-ray diffraction and first-principles calculations. In conclusion, the Na10.8Sn1.9PS11.8 phase is further evaluated as an electrolyte in a Na-Sn alloy/TiS2 battery, demonstrating its potential application in all-solid-state NIBs.

Authors:
 [1];  [1];  [1];  [1];  [2];  [1];  [1]
  1. The Pennsylvania State Univ., University Park, PA (United States)
  2. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Electricity (OE)
OSTI Identifier:
1420439
Alternate Identifier(s):
OSTI ID: 1703970
Report Number(s):
PNNL-SA-136565
Journal ID: ISSN 2211-2855; PII: S2211285518300557; TRN: US1801496
Grant/Contract Number:  
AC05-76RL01830; 70247; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nano Energy
Additional Journal Information:
Journal Volume: 47; Journal ID: ISSN 2211-2855
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; solid-state electrolyte; sodium-ion conductor; sodium-ion battery; single crystal X-ray

Citation Formats

Yu, Zhaoxin, Shang, Shun -Li, Gao, Yue, Wang, Daiwei, Li, Xiaolin, Liu, Zi -Kui, and Wang, Donghai. A Quaternary Sodium Superionic Conductor - Na10.8Sn1.9PS11.8. United States: N. p., 2018. Web. doi:10.1016/J.NANOEN.2018.01.046.
Yu, Zhaoxin, Shang, Shun -Li, Gao, Yue, Wang, Daiwei, Li, Xiaolin, Liu, Zi -Kui, & Wang, Donghai. A Quaternary Sodium Superionic Conductor - Na10.8Sn1.9PS11.8. United States. https://doi.org/10.1016/J.NANOEN.2018.01.046
Yu, Zhaoxin, Shang, Shun -Li, Gao, Yue, Wang, Daiwei, Li, Xiaolin, Liu, Zi -Kui, and Wang, Donghai. Wed . "A Quaternary Sodium Superionic Conductor - Na10.8Sn1.9PS11.8". United States. https://doi.org/10.1016/J.NANOEN.2018.01.046. https://www.osti.gov/servlets/purl/1420439.
@article{osti_1420439,
title = {A Quaternary Sodium Superionic Conductor - Na10.8Sn1.9PS11.8},
author = {Yu, Zhaoxin and Shang, Shun -Li and Gao, Yue and Wang, Daiwei and Li, Xiaolin and Liu, Zi -Kui and Wang, Donghai},
abstractNote = {Sulfide-based Na-ion conductors are promising candidates as solid-state electrolytes (SSEs) for fabrication of solid-state Na-ion batteries (NIBs) because of their high ionic conductivities and low grain boundary resistance. Currently, most of the sulfide-based Na-ion conductors with high conductivities are focused on Na3PS4 phases and its derivatives. It is desirable to develop Na-ion conductors with new composition and crystal structure to achieve superior ionic conductivities. Here we report a new quaternary Na-ion conductor, Na10.8Sn1.9PS11.8, exhibiting a high ionic conductivity of 0.67 mS cm–1 at 25 °C. This high ionic conductivity originates from the presence of a large number of intrinsic Na-vacancies and three-dimensional Na-ion conduction pathways, which has been confirmed by single-crystal X-ray diffraction and first-principles calculations. In conclusion, the Na10.8Sn1.9PS11.8 phase is further evaluated as an electrolyte in a Na-Sn alloy/TiS2 battery, demonstrating its potential application in all-solid-state NIBs.},
doi = {10.1016/J.NANOEN.2018.01.046},
journal = {Nano Energy},
number = ,
volume = 47,
place = {United States},
year = {Wed Jan 31 00:00:00 EST 2018},
month = {Wed Jan 31 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 40 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Challenges and Perspectives for NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries
journal, June 2017


A review of energy storage technologies for wind power applications
journal, May 2012

  • Díaz-González, Francisco; Sumper, Andreas; Gomis-Bellmunt, Oriol
  • Renewable and Sustainable Energy Reviews, Vol. 16, Issue 4
  • DOI: 10.1016/j.rser.2012.01.029

The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
journal, February 2015

  • Kundu, Dipan; Talaie, Elahe; Duffort, Victor
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201410376

Functional Materials for Rechargeable Batteries
journal, March 2011

  • Cheng, Fangyi; Liang, Jing; Tao, Zhanliang
  • Advanced Materials, Vol. 23, Issue 15
  • DOI: 10.1002/adma.201003587

Flexible electrode for long-life rechargeable sodium-ion batteries: effect of oxygen vacancy in MoO 3−x
journal, January 2016

  • Li, Yifei; Wang, Dandan; An, Qinyou
  • Journal of Materials Chemistry A, Vol. 4, Issue 15
  • DOI: 10.1039/C6TA01342B

Electric Dipoles and Ionic Conductivity in a Na + Glass Electrolyte
journal, December 2016

  • Braga, M. Helena; Ferreira, Jorge A.; Murchison, Andrew J.
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.0691702jes

Ultrafine TiO 2 Confined in Porous-Nitrogen-Doped Carbon from Metal–Organic Frameworks for High-Performance Lithium Sulfur Batteries
journal, March 2017

  • An, Yongling; Zhang, Zhen; Fei, Huifang
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 14
  • DOI: 10.1021/acsami.6b16699

High-Performance All-Inorganic Solid-State Sodium–Sulfur Battery
journal, April 2017


In search of an optimized electrolyte for Na-ion batteries
journal, January 2012

  • Ponrouch, Alexandre; Marchante, Elena; Courty, Matthieu
  • Energy & Environmental Science, Vol. 5, Issue 9
  • DOI: 10.1039/c2ee22258b

Thermoplastic Elastomer-Enabled Smart Electrolyte for Thermoresponsive Self-Protection of Electrochemical Energy Storage Devices
journal, July 2016


Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes
journal, January 2017


A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells
journal, January 2016

  • Braga, M. Helena; Murchison, Andrew J.; Ferreira, Jorge A.
  • Energy & Environmental Science, Vol. 9, Issue 3
  • DOI: 10.1039/C5EE02924D

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


A Battery Made from a Single Material
journal, April 2015


Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries
journal, December 2016

  • Zeng, Xian-Xiang; Yin, Ya-Xia; Li, Nian-Wu
  • Journal of the American Chemical Society, Vol. 138, Issue 49
  • DOI: 10.1021/jacs.6b10088

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na 10 GeP 2 S 12
journal, January 2015

  • Kandagal, Vinay S.; Bharadwaj, Mridula Dixit; Waghmare, Umesh V.
  • Journal of Materials Chemistry A, Vol. 3, Issue 24
  • DOI: 10.1039/C5TA01616A

Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries
journal, January 2012

  • Hayashi, Akitoshi; Noi, Kousuke; Sakuda, Atsushi
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1843

Alkali metal crystalline polymer electrolytes
journal, July 2009

  • Zhang, Chuhong; Gamble, Stephen; Ainsworth, David
  • Nature Materials, Vol. 8, Issue 7
  • DOI: 10.1038/nmat2474

Conductivity measurements on nasicon and nasicon-modified materials
journal, July 1999


High temperature sodium batteries: status, challenges and future trends
journal, January 2013

  • Hueso, Karina B.; Armand, Michel; Rojo, Teófilo
  • Energy & Environmental Science, Vol. 6, Issue 3
  • DOI: 10.1039/c3ee24086j

Main Challenges for High Performance NAS Battery: Materials and Interfaces
journal, May 2012

  • Wen, Zhaoyin; Hu, Yingying; Wu, Xiangwei
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200473

Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Influence of annealing on ionic transfer and storage stability of Li2S–P2S5 solid electrolyte
journal, October 2015


Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4
journal, July 2014


X-ray Crystal Structure Analysis of Sodium-Ion Conductivity in 94 Na 3 PS 4 ⋅6 Na 4 SiS 4 Glass-Ceramic Electrolytes
journal, June 2014

  • Tanibata, Naoto; Noi, Kousuke; Hayashi, Akitoshi
  • ChemElectroChem, Vol. 1, Issue 7
  • DOI: 10.1002/celc.201402016

Exceptionally High Ionic Conductivity in Na 3 P 0.62 As 0.38 S 4 with Improved Moisture Stability for Solid-State Sodium-Ion Batteries
journal, February 2017

  • Yu, Zhaoxin; Shang, Shun-Li; Seo, Joo-Hwan
  • Advanced Materials, Vol. 29, Issue 16
  • DOI: 10.1002/adma.201605561

Origin of Outstanding Phase and Moisture Stability in a Na 3 P 1– x As x S 4 Superionic Conductor
journal, May 2017

  • Shang, Shun-Li; Yu, Zhaoxin; Wang, Yi
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 19
  • DOI: 10.1021/acsami.7b03606

Na 3 PSe 4 : A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity
journal, October 2015


Na 3 SbS 4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries
journal, July 2016

  • Banerjee, Abhik; Park, Kern Ho; Heo, Jongwook W.
  • Angewandte Chemie International Edition, Vol. 55, Issue 33
  • DOI: 10.1002/anie.201604158

An Air-Stable Na 3 SbS 4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure
journal, June 2016

  • Wang, Hui; Chen, Yan; Hood, Zachary D.
  • Angewandte Chemie International Edition, Vol. 55, Issue 30
  • DOI: 10.1002/anie.201601546

Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor
journal, September 2016

  • Chu, Iek-Heng; Kompella, Christopher S.; Nguyen, Han
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep33733

Li 10 SnP 2 S 12 : An Affordable Lithium Superionic Conductor
journal, October 2013

  • Bron, Philipp; Johansson, Sebastian; Zick, Klaus
  • Journal of the American Chemical Society, Vol. 135, Issue 42
  • DOI: 10.1021/ja407393y

Design and synthesis of the superionic conductor Na10SnP2S12
journal, March 2016

  • Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11009

USPEX—Evolutionary crystal structure prediction
journal, December 2006

  • Glass, Colin W.; Oganov, Artem R.; Hansen, Nikolaus
  • Computer Physics Communications, Vol. 175, Issue 11-12
  • DOI: 10.1016/j.cpc.2006.07.020

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


First-principles calculations of lattice dynamics and thermal properties of polar solids
journal, May 2016


First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al
journal, February 2010


VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
journal, October 2011


Vacancy-Controlled Na + Superion Conduction in Na 11 Sn 2 PS 12
journal, January 2018

  • Duchardt, Marc; Ruschewitz, Uwe; Adams, Stefan
  • Angewandte Chemie International Edition, Vol. 57, Issue 5
  • DOI: 10.1002/anie.201712769

Na 11 Sn 2 PS 12 : a new solid state sodium superionic conductor
journal, January 2018

  • Zhang, Z.; Ramos, E.; Lalère, F.
  • Energy & Environmental Science, Vol. 11, Issue 1
  • DOI: 10.1039/C7EE03083E

Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions
journal, November 2011


Li[sub 9]SiAlO[sub 8]: A Lithium Ion Electrolyte for Voltages above 5.4 V
journal, January 1996

  • Neudecker, B. J.
  • Journal of The Electrochemical Society, Vol. 143, Issue 7
  • DOI: 10.1149/1.1836980

Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na 3 PS 4 and Sodium β-Alumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries
journal, October 2016

  • Wenzel, Sebastian; Leichtweiss, Thomas; Weber, Dominik A.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 41
  • DOI: 10.1021/acsami.6b10119

Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li 10 GeP 2 S 12 at the Lithium Metal Anode
journal, March 2016


Works referencing / citing this record:

Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li 10 GeP 2 S 12 Solid Electrolyte Interface
journal, September 2018


Nonaqueous Sodium‐Ion Full Cells: Status, Strategies, and Prospects
journal, March 2019


Na 1.5 La 1.5 TeO 6 : Na + conduction in a novel Na-rich double perovskite
journal, January 2018

  • Amores, Marco; Baker, Peter J.; Cussen, Edmund J.
  • Chemical Communications, Vol. 54, Issue 72
  • DOI: 10.1039/c8cc03367f

Recent Research on Strategies to Improve Ion Conduction in Alkali Metal‐Ion Batteries
journal, April 2019


Mechanochemical synthesis of fast sodium ion conductor Na 11 Sn 2 PSe 12 enables first sodium–selenium all-solid-state battery
journal, January 2019

  • Rao, R. Prasada; Zhang, Xin; Phuah, Kia Chai
  • Journal of Materials Chemistry A, Vol. 7, Issue 36
  • DOI: 10.1039/c9ta06279c

LaLiO 2 -Based Multi-Functional Interlayer for Enhanced Performance of Li-S Batteries
journal, January 2019

  • Bizuneh, Girum Girma; Fan, Jingmin; Sun, Cui
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.0271902jes

Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li 10 GeP 2 S 12 Solid Electrolyte Interface
journal, September 2018

  • Gao, Yue; Wang, Daiwei; Li, Yuguang C.
  • Angewandte Chemie International Edition, Vol. 57, Issue 41
  • DOI: 10.1002/anie.201807304

Electrolytes and Electrolyte/Electrode Interfaces in Sodium‐Ion Batteries: From Scientific Research to Practical Application
journal, March 2019


A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature
journal, November 2019