DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Four-Wave-Mixing Approach to In Situ Detection of Nanoparticles

Abstract

Here, we report on the development and experimental validation of a laser-based technique which uses coherent Rayleigh-Brillouin scattering (CRBS) to detect nanoparticles with characteristic sizes ranging from the atomic scale to tens of nanometers. This technique is aimed (nonexclusively) at the detection of nanoparticles produced by volumetric nanoparticle synthesis methods. Using CRBS, carbon nanoparticles of dimensions less than 10 nm and concentrations of 1010 cm–3 are detected in situ in a carbon arc discharge with graphite electrodes. This four-wave-mixing approach should enable advances in the understanding of nanoparticle growth that could potentially lead to improved modeling of the growth mechanisms, and thus to improve synthesis selectivity of nanoparticles and yield.

Authors:
 [1];  [2];  [2];  [1];  [1];  [1]
  1. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  2. Princeton Univ., Princeton, NJ (United States)
Publication Date:
Research Org.:
Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1420375
Alternate Identifier(s):
OSTI ID: 1418392
Grant/Contract Number:  
AC02-09CH11466
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Applied
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2331-7019
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Gerakis, Alexandros, Yeh, Yao -Wen, Shneider, Mikhail N., Mitrani, James M., Stratton, Brentley C., and Raitses, Yevgeny. Four-Wave-Mixing Approach to In Situ Detection of Nanoparticles. United States: N. p., 2018. Web. doi:10.1103/PhysRevApplied.9.014031.
Gerakis, Alexandros, Yeh, Yao -Wen, Shneider, Mikhail N., Mitrani, James M., Stratton, Brentley C., & Raitses, Yevgeny. Four-Wave-Mixing Approach to In Situ Detection of Nanoparticles. United States. https://doi.org/10.1103/PhysRevApplied.9.014031
Gerakis, Alexandros, Yeh, Yao -Wen, Shneider, Mikhail N., Mitrani, James M., Stratton, Brentley C., and Raitses, Yevgeny. Mon . "Four-Wave-Mixing Approach to In Situ Detection of Nanoparticles". United States. https://doi.org/10.1103/PhysRevApplied.9.014031. https://www.osti.gov/servlets/purl/1420375.
@article{osti_1420375,
title = {Four-Wave-Mixing Approach to In Situ Detection of Nanoparticles},
author = {Gerakis, Alexandros and Yeh, Yao -Wen and Shneider, Mikhail N. and Mitrani, James M. and Stratton, Brentley C. and Raitses, Yevgeny},
abstractNote = {Here, we report on the development and experimental validation of a laser-based technique which uses coherent Rayleigh-Brillouin scattering (CRBS) to detect nanoparticles with characteristic sizes ranging from the atomic scale to tens of nanometers. This technique is aimed (nonexclusively) at the detection of nanoparticles produced by volumetric nanoparticle synthesis methods. Using CRBS, carbon nanoparticles of dimensions less than 10 nm and concentrations of 1010 cm–3 are detected in situ in a carbon arc discharge with graphite electrodes. This four-wave-mixing approach should enable advances in the understanding of nanoparticle growth that could potentially lead to improved modeling of the growth mechanisms, and thus to improve synthesis selectivity of nanoparticles and yield.},
doi = {10.1103/PhysRevApplied.9.014031},
journal = {Physical Review Applied},
number = 1,
volume = 9,
place = {United States},
year = {Mon Jan 29 00:00:00 EST 2018},
month = {Mon Jan 29 00:00:00 EST 2018}
}

Journal Article:

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Typical planar CRBS geometry. Two nearly counter-propagating pump beams of the same polarization interfere within a medium to create an optical lattice. A probe beam with polarization normal to that of the pumps, is incident on this lattice at the Bragg angle to give the fourth beam, themore » signal beam« less

Save / Share:

Works referenced in this record:

Probing the dynamics of nanoparticle growth in a flame using synchrotron radiation
journal, May 2004

  • Beaucage, Gregory; Kammler, Hendrik K.; Mueller, Roger
  • Nature Materials, Vol. 3, Issue 6
  • DOI: 10.1038/nmat1135

The Reflection of X-rays by Crystals
journal, July 1913

  • Bragg, W. H.; Bragg, W. L.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 88, Issue 605
  • DOI: 10.1098/rspa.1913.0040

Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses
journal, June 2014

  • Xu, Rui; Jiang, Huaidong; Song, Changyong
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5061

The 60-carbon cluster has been revealed
journal, June 1987


An all-optical, in situ diagnostic for large molecule and nanoparticle detection
conference, February 2017

  • Gerakis, Alexandros; Shneider, Mikhail N.; Stratton, Brentley C.
  • SPIE LASE, SPIE Proceedings
  • DOI: 10.1117/12.2253421

Coherent Rayleigh-Brillouin scattering measurement of atmospheric atomic and molecular gas temperature
journal, January 2014


Coherent Rayleigh–Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory
journal, October 2010

  • Meijer, A. S.; de Wijn, A. S.; Peters, M. F. E.
  • The Journal of Chemical Physics, Vol. 133, Issue 16
  • DOI: 10.1063/1.3491513

Coherent Rayleigh Scattering
journal, August 2000


Helical microtubules of graphitic carbon
journal, November 1991


Formation of carbon nanotubes: In situ optical analysis using laser-induced incandescence and laser-induced fluorescence
journal, April 2010


X-ray scattering studies of the generation of carbon nanoparticles in flames and their transition from gas phase to condensed phase
journal, December 2009


Hydrogen-Catalyzed, Pilot-Scale Production of Small-Diameter Boron Nitride Nanotubes and Their Macroscopic Assemblies
journal, May 2014

  • Kim, Keun Su; Kingston, Christopher T.; Hrdina, Amy
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn501661p

Application of coherent Rayleigh-Brillouin scattering for in situ nanoparticle and large molecule detection
journal, April 2013

  • Shneider, M. N.; Gimelshein, S. F.
  • Applied Physics Letters, Vol. 102, Issue 17
  • DOI: 10.1063/1.4804137

Thermodynamic properties of carbon up to the critical point
journal, October 1973


C60: Buckminsterfullerene
journal, November 1985

  • Kroto, H. W.; Heath, J. R.; O'Brien, S. C.
  • Nature, Vol. 318, Issue 6042
  • DOI: 10.1038/318162a0

Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures
journal, October 2010


Modeling laser-induced incandescence of soot: a summary and comparison of LII models
journal, April 2007


Detection of nanoparticles in carbon arc discharge with laser-induced incandescence
journal, June 2017


Fullerene and nanotube synthesis. plasma spectroscopy studies
journal, November 1997

  • Byszewski, Przemysław; Lange, Hubert; Huczko, Andrzej
  • Journal of Physics and Chemistry of Solids, Vol. 58, Issue 11
  • DOI: 10.1016/S0022-3697(97)00051-6

The elusive history of m∼= 1.57 – 0.56i for the refractive index of soot
journal, November 1996


Optical Emission Spectroscopy of Arc Flame Plasma for Generation of Carbon Nanotubes
journal, August 2000

  • Akita, Seiji; Ashihara, Hiroshi; Nakayama, Yoshikazu
  • Japanese Journal of Applied Physics, Vol. 39, Issue Part 1, No. 8
  • DOI: 10.1143/JJAP.39.4939

Numerical simulation of carbon arc discharge for nanoparticle synthesis
journal, July 2012

  • Kundrapu, M.; Keidar, M.
  • Physics of Plasmas, Vol. 19, Issue 7
  • DOI: 10.1063/1.4737153

Determining synthesis region of the single wall carbon nanotubes in arc plasma volume
journal, October 2016


In situ Raman characterization of nanoparticle aerosols during flame synthesis
journal, June 2010


Boron Nitride Nanotubes
journal, August 1995


Synthesis of boron nitride nanowires
journal, May 2002

  • Huo, K. F.; Hu, Z.; Chen, F.
  • Applied Physics Letters, Vol. 80, Issue 19
  • DOI: 10.1063/1.1479213

Remote-sensing gas measurements with coherent Rayleigh-Brillouin scattering
journal, July 2016

  • Gerakis, A.; Shneider, M. N.; Stratton, B. C.
  • Applied Physics Letters, Vol. 109, Issue 3
  • DOI: 10.1063/1.4959778

Flame aerosol synthesis of nanostructured materials and functional devices: Processing, modeling, and diagnostics
journal, July 2016


Structural variations of the cathode deposit in the carbon arc
journal, August 2016


Coherent Rayleigh-Brillouin Scattering
journal, October 2002


Morphology, structure, and growth of nanoparticles produced in a carbon arc
journal, November 1995


Diffraction before destruction
journal, July 2014

  • Chapman, Henry N.; Caleman, Carl; Timneanu, Nicusor
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 369, Issue 1647
  • DOI: 10.1098/rstb.2013.0313

Evidence for Nanoparticles in Microwave-Generated Fireballs Observed by Synchrotron X-Ray Scattering
journal, February 2008


Single-shot coherent Rayleigh–Brillouin scattering using a chirped optical lattice
journal, January 2013

  • Gerakis, A.; Shneider, M. N.; Barker, P. F.
  • Optics Letters, Vol. 38, Issue 21
  • DOI: 10.1364/OL.38.004449

Modeling thermionic emission from laser-heated nanoparticles
journal, February 2016

  • Mitrani, J. M.; Shneider, M. N.; Stratton, B. C.
  • Applied Physics Letters, Vol. 108, Issue 5
  • DOI: 10.1063/1.4940992

Single-shell carbon nanotubes of 1-nm diameter
journal, June 1993

  • Iijima, Sumio; Ichihashi, Toshinari
  • Nature, Vol. 363, Issue 6430
  • DOI: 10.1038/363603a0

Coherent Rayleigh-Brillouin scattering in molecular gases
journal, March 2004


Mass-production of boron nitride double-wall nanotubes and nanococoons
journal, January 2000


In situ Characterization of Nanoparticles Using Rayleigh Scattering
journal, January 2017

  • Santra, Biswajit; Shneider, Mikhail N.; Car, Roberto
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep40230

Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms
journal, January 2003

  • Michelsen, Hope A.; Witze, Peter O.; Kayes, David
  • Applied Optics, Vol. 42, Issue 27
  • DOI: 10.1364/AO.42.005577

Carbon nanoparticles in the radiation field of the stationary arc discharge
journal, July 2015


Flame Synthesis of Nanoparticles
journal, June 2001


Flame Synthesis of Nanoparticles
journal, June 2001


Boron nitride nanotubes
journal, January 1998


The Reflection of X-Rays by Crystals
journal, June 1913


In situ Characterization of Nanoparticles Using Rayleigh Scattering
text, January 2017


Works referencing / citing this record:

Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials
journal, February 2019

  • Kim, K. S.; Kim, T. H.
  • Journal of Applied Physics, Vol. 125, Issue 7
  • DOI: 10.1063/1.5060977

Multiparametric diagnostic in the synthesis of carbon nanostructures via submerged arc discharge: Stability, nucleation and yield
journal, November 2019

  • Hernandez-Tabares, L.; Fortune-Fabregas, S.; Chao-Mujica, F. J.
  • Journal of Applied Physics, Vol. 126, Issue 18
  • DOI: 10.1063/1.5108815

In situ diagnostics for nanomaterial synthesis in carbon arc plasma
journal, August 2018

  • Stratton, B. C.; Gerakis, A.; Kaganovich, I.
  • Plasma Sources Science and Technology, Vol. 27, Issue 8
  • DOI: 10.1088/1361-6595/aad3fa

High-Gain and Narrow-Bandwidth Optical Amplifier via Optomechanical Four-Wave Mixing
journal, June 2019


Synthesis of nanoparticles in carbon arc: measurements and modeling
journal, May 2018

  • Yatom, Shurik; Khrabry, Alexander; Mitrani, James
  • MRS Communications, Vol. 8, Issue 03
  • DOI: 10.1557/mrc.2018.91

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.