skip to main content

DOE PAGESDOE PAGES

Title: Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries

Phosphorene adsorbs Mg to form a stable product MgP 2 , delivering a theoretical specific capacity of 865 mA h g −1 .
Authors:
 [1] ;  [1] ; ORCiD logo [1] ; ORCiD logo [2] ; ORCiD logo [3]
  1. School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
  2. Department of Applied Physics, Stanford University, Stanford, USA
  3. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
Publication Date:
Grant/Contract Number:
AC02-76-SFO0515
Type:
Published Article
Journal Name:
RSC Advances
Additional Journal Information:
Journal Name: RSC Advances Journal Volume: 8 Journal Issue: 13; Journal ID: ISSN 2046-2069
Publisher:
Royal Society of Chemistry (RSC)
Sponsoring Org:
USDOE
Country of Publication:
United Kingdom
Language:
English
OSTI Identifier:
1420340

Han, Xinpeng, Liu, Cheng, Sun, Jie, Sendek, Austin D., and Yang, Wensheng. Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries. United Kingdom: N. p., Web. doi:10.1039/C7RA12400G.
Han, Xinpeng, Liu, Cheng, Sun, Jie, Sendek, Austin D., & Yang, Wensheng. Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries. United Kingdom. doi:10.1039/C7RA12400G.
Han, Xinpeng, Liu, Cheng, Sun, Jie, Sendek, Austin D., and Yang, Wensheng. 2018. "Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries". United Kingdom. doi:10.1039/C7RA12400G.
@article{osti_1420340,
title = {Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries},
author = {Han, Xinpeng and Liu, Cheng and Sun, Jie and Sendek, Austin D. and Yang, Wensheng},
abstractNote = {Phosphorene adsorbs Mg to form a stable product MgP 2 , delivering a theoretical specific capacity of 865 mA h g −1 .},
doi = {10.1039/C7RA12400G},
journal = {RSC Advances},
number = 13,
volume = 8,
place = {United Kingdom},
year = {2018},
month = {1}
}

Works referenced in this record:

Electrochemical Energy Storage for Green Grid
journal, May 2011
  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Magnesium insertion electrodes for rechargeable nonaqueous batteries — a competitive alternative to lithium?
journal, September 1999

Prototype systems for rechargeable magnesium batteries
journal, October 2000
  • Aurbach, D.; Lu, Z.; Schechter, A.
  • Nature, Vol. 407, Issue 6805, p. 724-727
  • DOI: 10.1038/35037553

Sodium-Ion Batteries
journal, May 2012
  • Slater, Michael D.; Kim, Donghan; Lee, Eungje
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 947-958
  • DOI: 10.1002/adfm.201200691

A review on the key issues for lithium-ion battery management in electric vehicles
journal, March 2013

Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
journal, May 2012
  • Kim, Sung-Wook; Seo, Dong-Hwa; Ma, Xiaohua
  • Advanced Energy Materials, Vol. 2, Issue 7, p. 710-721
  • DOI: 10.1002/aenm.201200026

Electrolyte roadblocks to a magnesium rechargeable battery
journal, January 2012
  • Muldoon, John; Bucur, Claudiu B.; Oliver, Allen G.
  • Energy & Environmental Science, Vol. 5, Issue 3, p. 5941-5950
  • DOI: 10.1039/c2ee03029b