skip to main content

DOE PAGESDOE PAGES

Title: Redox Transformations of As and Se at the Surfaces of Natural and Synthetic Ferric Nontronites: Role of Structural and Adsorbed Fe(II)

Adsorption and redox transformations on clay mineral surfaces are prevalent in surface environments. We examined the redox reactivity of iron Fe(II)/Fe(III) associated with natural and synthetic ferric nontronites. Specifically, we assessed how Fe(II) residing in the octahedral sheets, or Fe(II) adsorbed at the edge sites alters redox activity of nontronites. To probe the redox activity we used arsenic (As) and selenium (Se). Activation of both synthetic and natural ferric nontronites was. observed following the introduction of Fe(II) into predominantly-Fe(III) octahedral sheets or through the adsorption of Fe(II) onto the mineral surface. The oxidation of As(III) to As(V) was observed via catalytic (oxic conditions) and, to a lesser degree, via direct (anoxic conditions) pathways. We provide experimental evidence for electron transfer from As(III) to Fe(111) at the natural and synthetic nontronite surfaces, and illustrate that only a fraction of structural Fe(III) is accessible for redox transformations. We show that As adsorbed onto natural and synthetic nontronites forms identical adsorption complexes, namely inner-sphere binuclear bidentate. In conclusion, we show that the formation of an inner-sphere adsorption complex may be a necessary step for the redox transformation via catalytic or direct oxidation pathways.
Authors:
ORCiD logo [1] ;  [1] ; ORCiD logo [2] ;  [3] ;  [3]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Univ. of New Mexico, Albuquerque, NM (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Grant/Contract Number:
AC02-06CH11357
Type:
Accepted Manuscript
Journal Name:
Environmental Science and Technology
Additional Journal Information:
Journal Volume: 51; Journal Issue: 19; Journal ID: ISSN 0013-936X
Publisher:
American Chemical Society (ACS)
Research Org:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; LC-ICP-MS; XAS; XPS; arsenic; electron transfer; iron; montronite; redox; selenium
OSTI Identifier:
1420143