skip to main content

DOE PAGESDOE PAGES

Title: Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments ( Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.
Authors:
 [1] ;  [2] ;  [3] ;  [1] ;  [2] ;  [4] ;  [1] ;  [5] ;  [6] ;  [6] ;  [6] ;  [7] ;  [8] ;  [8] ;  [8] ;  [9] ;  [6] ;  [10] ;  [1] ;  [6] more »;  [6] ;  [8] ;  [11] ;  [9] ;  [12] ;  [12] ;  [12] ;  [13] ;  [6] ;  [6] ;  [6] ;  [9] ;  [5] ;  [5] ;  [5] ;  [14] ;  [10] ;  [15] ;  [5] ;  [6] ;  [6] ;  [7] ;  [16] ;  [6] ;  [8] ;  [17] « less
  1. A*STAR (Agency for Science, Technology and Research) (Singapore)
  2. National Univ. of Singapore (Singapore)
  3. A*STAR (Agency for Science, Technology and Research) (Singapore); National Univ. of Singapore (Singapore)
  4. Univ. of Michigan, Ann Arbor, MI (United States)
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  6. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  7. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. of Hamburg, Hamburg (Germany)
  8. Univ. of Gothenburg (Sweden)
  9. Univ. of California, Los Angeles, CA (United States)
  10. Univ. of Canterbury, Christchurch (New Zealand)
  11. Institut Laue - Langevin, Grenoble (France); Keele Univ., Staffordshire (United Kingdom)
  12. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  13. Uppsala Univ., Uppsala (Sweden)
  14. Northeastern Univ., Boston, MA (United States)
  15. Institut Laue-Langevin, Grenoble (France); Keele Univ., Staffordshire (United Kingdom)
  16. National Univ. of Singapore (Singapore); A*STAR (Agency for Science, Technology and Research) (Singapore)
  17. A*STAR (Agency for Science, Technology and Research) (Singapore); National Univ. of Singapore (Singapore); Okayama Univ., Okayama (Japan)
Publication Date:
Grant/Contract Number:
AC02-05CH11231; AC02-76SF00515
Type:
Accepted Manuscript
Journal Name:
Cytoskeleton
Additional Journal Information:
Journal Volume: 74; Journal Issue: 12; Journal ID: ISSN 1949-3584
Publisher:
Wiley
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; XFEL; fiber diffraction; filament systems
OSTI Identifier:
1420139
Alternate Identifier(s):
OSTI ID: 1393240

Popp, David, Loh, N. Duane, Zorgati, Habiba, Ghoshdastider, Umesh, Liow, Lu Ting, Ivanova, Magdalena I., Larsson, Mårten, DePonte, Daniel P., Bean, Richard, Beyerlein, Kenneth R., Gati, Cornelius, Oberthuer, Dominik, Arnlund, David, Branden, Gisela, Berntsen, Peter, Cascio, Duilio, Chavas, Leonard M. G., Chen, Joe P. J., Ding, Ke, Fleckenstein, Holger, Gumprecht, Lars, Harimoorthy, Rajiv, Mossou, Estelle, Sawaya, Michael R., Brewster, Aaron S., Hattne, Johan, Sauter, Nicholas K., Seibert, Marvin, Seuring, Carolin, Stellato, Francesco, Tilp, Thomas, Eisenberg, David S., Messerschmidt, Marc, Williams, Garth J., Koglin, Jason E., Makowski, Lee, Millane, Rick P., Forsyth, Trevor, Boutet, Sebastien, White, Thomas A., Barty, Anton, Chapman, Henry, Chen, Swaine L., Liang, Mengning, Neutze, Richard, and Robinson, Robert C.. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser. United States: N. p., Web. doi:10.1002/cm.21378.
Popp, David, Loh, N. Duane, Zorgati, Habiba, Ghoshdastider, Umesh, Liow, Lu Ting, Ivanova, Magdalena I., Larsson, Mårten, DePonte, Daniel P., Bean, Richard, Beyerlein, Kenneth R., Gati, Cornelius, Oberthuer, Dominik, Arnlund, David, Branden, Gisela, Berntsen, Peter, Cascio, Duilio, Chavas, Leonard M. G., Chen, Joe P. J., Ding, Ke, Fleckenstein, Holger, Gumprecht, Lars, Harimoorthy, Rajiv, Mossou, Estelle, Sawaya, Michael R., Brewster, Aaron S., Hattne, Johan, Sauter, Nicholas K., Seibert, Marvin, Seuring, Carolin, Stellato, Francesco, Tilp, Thomas, Eisenberg, David S., Messerschmidt, Marc, Williams, Garth J., Koglin, Jason E., Makowski, Lee, Millane, Rick P., Forsyth, Trevor, Boutet, Sebastien, White, Thomas A., Barty, Anton, Chapman, Henry, Chen, Swaine L., Liang, Mengning, Neutze, Richard, & Robinson, Robert C.. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser. United States. doi:10.1002/cm.21378.
Popp, David, Loh, N. Duane, Zorgati, Habiba, Ghoshdastider, Umesh, Liow, Lu Ting, Ivanova, Magdalena I., Larsson, Mårten, DePonte, Daniel P., Bean, Richard, Beyerlein, Kenneth R., Gati, Cornelius, Oberthuer, Dominik, Arnlund, David, Branden, Gisela, Berntsen, Peter, Cascio, Duilio, Chavas, Leonard M. G., Chen, Joe P. J., Ding, Ke, Fleckenstein, Holger, Gumprecht, Lars, Harimoorthy, Rajiv, Mossou, Estelle, Sawaya, Michael R., Brewster, Aaron S., Hattne, Johan, Sauter, Nicholas K., Seibert, Marvin, Seuring, Carolin, Stellato, Francesco, Tilp, Thomas, Eisenberg, David S., Messerschmidt, Marc, Williams, Garth J., Koglin, Jason E., Makowski, Lee, Millane, Rick P., Forsyth, Trevor, Boutet, Sebastien, White, Thomas A., Barty, Anton, Chapman, Henry, Chen, Swaine L., Liang, Mengning, Neutze, Richard, and Robinson, Robert C.. 2017. "Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser". United States. doi:10.1002/cm.21378. https://www.osti.gov/servlets/purl/1420139.
@article{osti_1420139,
title = {Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser},
author = {Popp, David and Loh, N. Duane and Zorgati, Habiba and Ghoshdastider, Umesh and Liow, Lu Ting and Ivanova, Magdalena I. and Larsson, Mårten and DePonte, Daniel P. and Bean, Richard and Beyerlein, Kenneth R. and Gati, Cornelius and Oberthuer, Dominik and Arnlund, David and Branden, Gisela and Berntsen, Peter and Cascio, Duilio and Chavas, Leonard M. G. and Chen, Joe P. J. and Ding, Ke and Fleckenstein, Holger and Gumprecht, Lars and Harimoorthy, Rajiv and Mossou, Estelle and Sawaya, Michael R. and Brewster, Aaron S. and Hattne, Johan and Sauter, Nicholas K. and Seibert, Marvin and Seuring, Carolin and Stellato, Francesco and Tilp, Thomas and Eisenberg, David S. and Messerschmidt, Marc and Williams, Garth J. and Koglin, Jason E. and Makowski, Lee and Millane, Rick P. and Forsyth, Trevor and Boutet, Sebastien and White, Thomas A. and Barty, Anton and Chapman, Henry and Chen, Swaine L. and Liang, Mengning and Neutze, Richard and Robinson, Robert C.},
abstractNote = {A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments (Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determine that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.},
doi = {10.1002/cm.21378},
journal = {Cytoskeleton},
number = 12,
volume = 74,
place = {United States},
year = {2017},
month = {6}
}

Works referenced in this record:

Gas dynamic virtual nozzle for generation of microscopic droplet streams
journal, September 2008
  • DePonte, D. P.; Weierstall, U.; Schmidt, K.
  • Journal of Physics D: Applied Physics, Vol. 41, Issue 19, Article No. 195505
  • DOI: 10.1088/0022-3727/41/19/195505