skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution

Abstract

While the surface atomic structure of RuO 2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO 2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO2(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of –H 2O on the coordinatively unsaturated Ru sites (CUS) and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an –OO species on the Ru CUS sites was detected, which was stabilized by a neighboring –OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the –OH group used to stabilize –OO was found to be rate-limiting.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [4];  [5];  [6];  [7]; ORCiD logo [8];  [3];  [9];  [10];  [11]; ORCiD logo [3]; ORCiD logo [4];  [4]; ORCiD logo [12]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Research Lab. of Electronics
  3. Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Energy Conversion and Storage
  4. Technical Univ. of Denmark, Lyngby (Denmark). Section for Surface Physics and Catalysis, Dept. of Physics
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  6. Argonne National Lab. (ANL), Argonne, IL (United States)
  7. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
  8. Oregon State Univ., Corvallis, OR (United States). School of Chemical, Biological, and Environmental Engineering
  9. Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Division
  10. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering; Univ. di Milano-Bicocca (Italy). Dipartimento di Scienza dei Materiali
  11. Univ. of Copenhagen (Denmark). Dept. of Chemistry
  12. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Research Lab. of Electronics; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1419931
Alternate Identifier(s):
OSTI ID: 1433005
Grant/Contract Number:  
9455; AC02-06CH11357; AC02-76SF00515; ACI-1548562
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 10; Journal Issue: 12; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Rao, Reshma R., Kolb, Manuel J., Halck, Niels Bendtsen, Pedersen, Anders Filsoe, Mehta, Apurva, You, Hoydoo, Stoerzinger, Kelsey A., Feng, Zhenxing, Hansen, Heine A., Zhou, Hua, Giordano, Livia, Rossmeisl, Jan, Vegge, Tejs, Chorkendorff, Ib, Stephens, Ifan E. L., and Shao-Horn, Yang. Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution. United States: N. p., 2017. Web. doi:10.1039/c7ee02307c.
Rao, Reshma R., Kolb, Manuel J., Halck, Niels Bendtsen, Pedersen, Anders Filsoe, Mehta, Apurva, You, Hoydoo, Stoerzinger, Kelsey A., Feng, Zhenxing, Hansen, Heine A., Zhou, Hua, Giordano, Livia, Rossmeisl, Jan, Vegge, Tejs, Chorkendorff, Ib, Stephens, Ifan E. L., & Shao-Horn, Yang. Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution. United States. doi:10.1039/c7ee02307c.
Rao, Reshma R., Kolb, Manuel J., Halck, Niels Bendtsen, Pedersen, Anders Filsoe, Mehta, Apurva, You, Hoydoo, Stoerzinger, Kelsey A., Feng, Zhenxing, Hansen, Heine A., Zhou, Hua, Giordano, Livia, Rossmeisl, Jan, Vegge, Tejs, Chorkendorff, Ib, Stephens, Ifan E. L., and Shao-Horn, Yang. Fri . "Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution". United States. doi:10.1039/c7ee02307c. https://www.osti.gov/servlets/purl/1419931.
@article{osti_1419931,
title = {Towards identifying the active sites on RuO 2 (110) in catalyzing oxygen evolution},
author = {Rao, Reshma R. and Kolb, Manuel J. and Halck, Niels Bendtsen and Pedersen, Anders Filsoe and Mehta, Apurva and You, Hoydoo and Stoerzinger, Kelsey A. and Feng, Zhenxing and Hansen, Heine A. and Zhou, Hua and Giordano, Livia and Rossmeisl, Jan and Vegge, Tejs and Chorkendorff, Ib and Stephens, Ifan E. L. and Shao-Horn, Yang},
abstractNote = {While the surface atomic structure of RuO2 has been well studied in ultra high vacuum, much less is known about the interaction between water and RuO2 in aqueous solution. In this work, in situ surface X-ray scattering measurements combined with density functional theory (DFT) were used to determine the surface structural changes on single-crystal RuO2(110) as a function of potential in acidic electrolyte. The redox peaks at 0.7, 1.1 and 1.4 V vs. reversible hydrogen electrode (RHE) could be attributed to surface transitions associated with the successive deprotonation of –H2O on the coordinatively unsaturated Ru sites (CUS) and hydrogen adsorbed to the bridging oxygen sites. At potentials relevant to the oxygen evolution reaction (OER), an –OO species on the Ru CUS sites was detected, which was stabilized by a neighboring –OH group on the Ru CUS or bridge site. Combining potential-dependent surface structures with their energetics from DFT led to a new OER pathway, where the deprotonation of the –OH group used to stabilize –OO was found to be rate-limiting.},
doi = {10.1039/c7ee02307c},
journal = {Energy & Environmental Science},
number = 12,
volume = 10,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Oxygen reduction on nanocrystalline ruthenia – local structure effects
journal, January 2015

  • Abbott, Daniel F.; Mukerjee, Sanjeev; Petrykin, Valery
  • RSC Advances, Vol. 5, Issue 2
  • DOI: 10.1039/C4RA10001H

Surface core-level shifts at an oxygen-rich Ru surface: O/Ru(0001) vs. RuO2(110)
journal, September 2001


Effect of a humid environment on the surface structure of RuO 2 ( 110 )
journal, May 2003


Projector augmented-wave method
journal, December 1994


Mineral–water interfacial structures revealed by synchrotron X-ray scattering
journal, January 2004


Electrochemical Capacitors Using Hydrous Ruthenium Oxide and Hydrogen Inserted Ruthenium Oxide
journal, January 1998

  • Jow, T. R.
  • Journal of The Electrochemical Society, Vol. 145, Issue 1
  • DOI: 10.1149/1.1838209

Structural motifs of water on metal oxide surfaces
journal, January 2017

  • Mu, Rentao; Zhao, Zhi-jian; Dohnálek, Zdenek
  • Chemical Society Reviews, Vol. 46, Issue 7
  • DOI: 10.1039/C6CS00864J

Full Kinetics from First Principles of the Chlorine Evolution Reaction over a RuO 2 (110) Model Electrode
journal, May 2016

  • Exner, Kai S.; Anton, Josef; Jacob, Timo
  • Angewandte Chemie International Edition, Vol. 55, Issue 26
  • DOI: 10.1002/anie.201511804

Oxygen evolution on nanocrystalline RuO2 and Ru0.9Ni0.1O2−δ electrodes – DEMS approach to reaction mechanism determination
journal, October 2009


Mechanism of oxygen reactions at porous oxide electrodes. Part 2—Oxygen evolution at RuO2, IrO2 and IrxRu1−xO2 electrodes in aqueous acid and alkaline solution
journal, January 2011

  • Lyons, Michael E. G.; Floquet, Stephane
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 12
  • DOI: 10.1039/c0cp02875d

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Oxygen evolution on well-characterized mass-selected Ru and RuO 2 nanoparticles
journal, January 2015

  • Paoli, Elisa A.; Masini, Federico; Frydendal, Rasmus
  • Chemical Science, Vol. 6, Issue 1
  • DOI: 10.1039/C4SC02685C

Surface x-ray-scattering measurements of the substrate-induced spatial modulation of an incommensurate adsorbed monolayer
journal, September 1990

  • Toney, Michael F.; Gordon, Joseph G.; Samant, Mahesh G.
  • Physical Review B, Vol. 42, Issue 9
  • DOI: 10.1103/PhysRevB.42.5594

Visualization of Atomic Processes on Ruthenium Dioxide using Scanning Tunneling Microscopy
journal, February 2004


Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
journal, January 2014

  • Hisatomi, Takashi; Kubota, Jun; Domen, Kazunari
  • Chem. Soc. Rev., Vol. 43, Issue 22
  • DOI: 10.1039/C3CS60378D

Orientation-Dependent Oxygen Evolution Activities of Rutile IrO 2 and RuO 2
journal, April 2014

  • Stoerzinger, Kelsey A.; Qiao, Liang; Biegalski, Michael D.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 10
  • DOI: 10.1021/jz500610u

Electrochemical Interfaces of Porous Silicon and Ruthenium Dioxide
journal, January 1999

  • You, Hoydoo; Chu, Yong S.; Lister, Tedd E.
  • Japanese Journal of Applied Physics, Vol. 38, Issue S1
  • DOI: 10.7567/JJAPS.38S1.239

Functional Independent Scaling Relation for ORR/OER Catalysts
journal, October 2016

  • Christensen, Rune; Hansen, Heine A.; Dickens, Colin F.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 43
  • DOI: 10.1021/acs.jpcc.6b09141

XSEDE: Accelerating Scientific Discovery
journal, September 2014

  • Towns, John; Cockerill, Timothy; Dahan, Maytal
  • Computing in Science & Engineering, Vol. 16, Issue 5
  • DOI: 10.1109/MCSE.2014.80

X-ray Crystal Truncation Rod Studies of Surface Oxidation and Reduction on Pt(111)
journal, March 2016

  • Liu, Yihua; Barbour, Andi; Komanicky, Vladimir
  • The Journal of Physical Chemistry C, Vol. 120, Issue 29
  • DOI: 10.1021/acs.jpcc.6b00492

pH dependence of OER activity of oxides: Current and future perspectives
journal, March 2016


Oxidation Reactions over RuO2: A Comparative Study of the Reactivity of the (110) Single Crystal and Polycrystalline Surfaces
journal, September 2001


Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Ab initiomolecular dynamics for liquid metals
journal, January 1993


In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+
journal, August 2008


Surface Protonation at the Rutile (110) Interface: Explicit Incorporation of Solvation Structure within the Refined MUSIC Model Framework
journal, November 2008

  • Machesky, Michael L.; Předota, Milan; Wesolowski, David J.
  • Langmuir, Vol. 24, Issue 21
  • DOI: 10.1021/la801356m

Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds
journal, November 2010

  • Cook, Timothy R.; Dogutan, Dilek K.; Reece, Steven Y.
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr100246c

Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes
journal, January 2013

  • Doyle, Richard L.; Godwin, Ian J.; Brandon, Michael P.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 33
  • DOI: 10.1039/c3cp51213d

Powering the planet with solar fuel
journal, April 2009


Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution
journal, January 2017

  • Grimaud, Alexis; Diaz-Morales, Oscar; Han, Binghong
  • Nature Chemistry, Vol. 9, Issue 5
  • DOI: 10.1038/nchem.2695

Interaction of H2O with the RuO2(110) surface studied by HREELS and TDS
journal, January 2003


Mechanism of oxygen reactions at porous oxide electrodes. Part 1.—Oxygen evolution at RuO2 and RuxSn1–xO2 electrodes in alkaline solution under vigorous electrolysis conditions
journal, January 1987

  • Lyons, Michael E. G.; Burke, Laurence D.
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 83, Issue 2
  • DOI: 10.1039/f19878300299

Composition, structure, and stability of RuO 2 ( 110 ) as a function of oxygen pressure
journal, December 2001


How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors
journal, January 2004

  • Hu, Chi-Chang; Chen, Wei-Chun; Chang, Kuo-Hsin
  • Journal of The Electrochemical Society, Vol. 151, Issue 2
  • DOI: 10.1149/1.1639020

Effect of temperature annealing on capacitive and structural properties of hydrous ruthenium oxides
journal, October 2006


The Reaction Mechanism with Free Energy Barriers at Constant Potentials for the Oxygen Evolution Reaction at the IrO 2 (110) Surface
journal, December 2016

  • Ping, Yuan; Nielsen, Robert J.; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 139, Issue 1
  • DOI: 10.1021/jacs.6b07557

Synthesis and Activities of Rutile IrO 2 and RuO 2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions
journal, January 2012

  • Lee, Youngmin; Suntivich, Jin; May, Kevin J.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 3
  • DOI: 10.1021/jz2016507

Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
journal, March 2011

  • Man, Isabela C.; Su, Hai‐Yan; Calle‐Vallejo, Federico
  • ChemCatChem, Vol. 3, Issue 7
  • DOI: 10.1002/cctc.201000397

GenX : an extensible X-ray reflectivity refinement program utilizing differential evolution
journal, November 2007


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Electrolysis of water on oxide surfaces
journal, September 2007


The Role of Ru Redox in pH-Dependent Oxygen Evolution on Rutile Ruthenium Dioxide Surfaces
journal, May 2017


Orientation-Dependent Oxygen Evolution on RuO 2 without Lattice Exchange
journal, March 2017


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Ion Adsorption at the Rutile−Water Interface:  Linking Molecular and Macroscopic Properties
journal, June 2004

  • Zhang, Z.; Fenter, P.; Cheng, L.
  • Langmuir, Vol. 20, Issue 12
  • DOI: 10.1021/la0353834

Commensurate Water Monolayer at the RuO 2 ( 110 ) /Water Interface
journal, April 2001


Surface Chemistry of Late Transition Metal Oxides
journal, December 2012


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Cathodic activation of RuO 2 single crystal surfaces for hydrogen-evolution reaction
journal, September 2003


Catalytic Oxidation of Ammonia on RuO 2 (110) Surfaces:  Mechanism and Selectivity
journal, April 2005

  • Wang, Y.; Jacobi, K.; Schöne, W. -D.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 16
  • DOI: 10.1021/jp045735v

Characterization of Various Oxygen Species on an Oxide Surface:  RuO 2 (110)
journal, May 2001

  • Kim, Y. D.; Seitsonen, A. P.; Wendt, S.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 18
  • DOI: 10.1021/jp003213j

In situ x-ray-diffraction and -reflectivity studies of the Au(111)/electrolyte interface: Reconstruction and anion adsorption
journal, October 1992


Ruthenium dioxide-based film electrodes: III. Effect of chemical composition and surface morphology on oxygen evolution in acid solutions
journal, March 1978

  • Lodi, G.; Sivieri, E.; De Battisti, A.
  • Journal of Applied Electrochemistry, Vol. 8, Issue 2
  • DOI: 10.1007/BF00617671

Electrocatalytic Oxygen Evolution Reaction in Acidic Environments - Reaction Mechanisms and Catalysts
journal, October 2016

  • Reier, Tobias; Nong, Hong Nhan; Teschner, Detre
  • Advanced Energy Materials, Vol. 7, Issue 1
  • DOI: 10.1002/aenm.201601275

Deprotonated Water Dimers: The Building Blocks of Segmented Water Chains on Rutile RuO 2 (110)
journal, August 2015

  • Mu, Rentao; Cantu, David C.; Glezakou, Vassiliki-Alexandra
  • The Journal of Physical Chemistry C, Vol. 119, Issue 41
  • DOI: 10.1021/acs.jpcc.5b07158

Surface X-ray diffraction studies of single crystal electrocatalysts
journal, November 2016


Voltage-Controlled Interfacial Layering in an Ionic Liquid on SrTiO 3
journal, March 2016


Atomic-Scale Structure and Catalytic Reactivity of the RuO2(110) Surface
journal, February 2000


Spectroscopic characterization of catalytically active surface sites of a metallic oxide
journal, July 2001


Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

Interaction of NO with the Stoichiometric RuO 2 (110) Surface
journal, December 2003

  • Wang, Y.; Jacobi, K.; Ertl, G.
  • The Journal of Physical Chemistry B, Vol. 107, Issue 50
  • DOI: 10.1021/jp0308108

Electrocatalysis in the anodic evolution of oxygen and chlorine
journal, November 1984


A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II
journal, March 2012

  • Duan, Lele; Bozoglian, Fernando; Mandal, Sukanta
  • Nature Chemistry, Vol. 4, Issue 5
  • DOI: 10.1038/nchem.1301

Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry
journal, November 1987

  • Wohlfahrt-Mehrens, M.; Heitbaum, J.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 237, Issue 2
  • DOI: 10.1016/0022-0728(87)85237-3

Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO 2 (110)
journal, February 2017

  • Kuo, Ding-Yuan; Kawasaki, Jason K.; Nelson, Jocienne N.
  • Journal of the American Chemical Society, Vol. 139, Issue 9
  • DOI: 10.1021/jacs.6b11932

Stable Deacon Process for HCl Oxidation over RuO2
journal, February 2008

  • Crihan, Daniela; Knapp, Marcus; Zweidinger, Stefan
  • Angewandte Chemie International Edition, Vol. 47, Issue 11
  • DOI: 10.1002/anie.200705124

Electrochemical and X-ray scattering study of well defined RuO2 single crystal surfaces
journal, May 2002


    Works referencing / citing this record:

    Design of Multi‐Metallic‐Based Electrocatalysts for Enhanced Water Oxidation
    journal, May 2019


    Design of Multi‐Metallic‐Based Electrocatalysts for Enhanced Water Oxidation
    journal, May 2019