skip to main content

DOE PAGESDOE PAGES

Title: Equality of e + e - production amplitudes for scalar-vector and pseudoscalar-axial heavy meson-antimeson pairs

The production of heavy meson-antimeson pairs of the type $SV$ and $PA$ in $${e}^{+}{e}^{{-}}$$ annihilation is considered, with $P$ and $V$ being the ground-state $${J}^{P}={0}^{{-}}$$ and $${J}^{P}={1}^{{-}}$$ (anti)mesons from the $$(1/2{)}^{{-}}$$ doublet and $S$ and $A$ standing for the excited $${J}^{P}={0}^{+}$$ and $${J}^{P}={1}^{+}$$ (anti)mesons from the $$(1/2{)}^{+}$$ doublet. It is argued that the production amplitudes in these two channels should be equal up to a higher (than one) order in the heavy quark mass ($${\mathrm{{\Lambda}}}_{\mathrm{QCD}}/{M}_{Q}$$) expansion, $$A({e}^{+}{e}^{{-}}{\rightarrow}S\overline{V})=A({e}^{+}{e}^{{-}}{\rightarrow}A\overline{P})$$, including both the $S$-wave and the $D$-wave amplitudes. Given that the $SV$ and $PA$ thresholds are extremely close, the production cross section in both channels should be the same to a high degree of accuracy. In practice, this behavior can be studied for the processes $${e}^{+}{e}^{{-}}{\rightarrow}{D}_{s0}(2317){\overline{D}}_{s}^{*}+\mathrm{c}.\mathrm{c}.$$ and $${e}^{+}{e}^{{-}}{\rightarrow}{D}_{s1}(2460){\overline{D}}_{s}+\mathrm{c}.\mathrm{c}.$$ in the charm sector and $${e}^{+}{e}^{{-}}{\rightarrow}{B}_{s0}{\overline{B}}_{s}^{*}+\mathrm{c}.\mathrm{c}.$$ and $${e}^{+}{e}^{{-}}{\rightarrow}{B}_{s1}{\overline{B}}_{s}+\mathrm{c}.\mathrm{c}.$$ in the $B$ sector.
Authors:
 [1]
  1. Univ. of Minnesota, Minneapolis, MN (United States). William I. Fine Theoretical Physics Inst. School of Physics and Astronomy; Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation)
Publication Date:
Grant/Contract Number:
SC0011842
Type:
Published Article
Journal Name:
Physical Review D
Additional Journal Information:
Journal Volume: 97; Journal Issue: 3; Journal ID: ISSN 2470-0010
Publisher:
American Physical Society (APS)
Research Org:
Univ. of Minnesota, Minneapolis, MN (United States)
Sponsoring Org:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; particle production
OSTI Identifier:
1419914
Alternate Identifier(s):
OSTI ID: 1503897

Voloshin, M. B.. Equality of e+e- production amplitudes for scalar-vector and pseudoscalar-axial heavy meson-antimeson pairs. United States: N. p., Web. doi:10.1103/physrevd.97.034008.
Voloshin, M. B.. Equality of e+e- production amplitudes for scalar-vector and pseudoscalar-axial heavy meson-antimeson pairs. United States. doi:10.1103/physrevd.97.034008.
Voloshin, M. B.. 2018. "Equality of e+e- production amplitudes for scalar-vector and pseudoscalar-axial heavy meson-antimeson pairs". United States. doi:10.1103/physrevd.97.034008.
@article{osti_1419914,
title = {Equality of e+e- production amplitudes for scalar-vector and pseudoscalar-axial heavy meson-antimeson pairs},
author = {Voloshin, M. B.},
abstractNote = {The production of heavy meson-antimeson pairs of the type $SV$ and $PA$ in ${e}^{+}{e}^{{-}}$ annihilation is considered, with $P$ and $V$ being the ground-state ${J}^{P}={0}^{{-}}$ and ${J}^{P}={1}^{{-}}$ (anti)mesons from the $(1/2{)}^{{-}}$ doublet and $S$ and $A$ standing for the excited ${J}^{P}={0}^{+}$ and ${J}^{P}={1}^{+}$ (anti)mesons from the $(1/2{)}^{+}$ doublet. It is argued that the production amplitudes in these two channels should be equal up to a higher (than one) order in the heavy quark mass (${\mathrm{{\Lambda}}}_{\mathrm{QCD}}/{M}_{Q}$) expansion, $A({e}^{+}{e}^{{-}}{\rightarrow}S\overline{V})=A({e}^{+}{e}^{{-}}{\rightarrow}A\overline{P})$, including both the $S$-wave and the $D$-wave amplitudes. Given that the $SV$ and $PA$ thresholds are extremely close, the production cross section in both channels should be the same to a high degree of accuracy. In practice, this behavior can be studied for the processes ${e}^{+}{e}^{{-}}{\rightarrow}{D}_{s0}(2317){\overline{D}}_{s}^{*}+\mathrm{c}.\mathrm{c}.$ and ${e}^{+}{e}^{{-}}{\rightarrow}{D}_{s1}(2460){\overline{D}}_{s}+\mathrm{c}.\mathrm{c}.$ in the charm sector and ${e}^{+}{e}^{{-}}{\rightarrow}{B}_{s0}{\overline{B}}_{s}^{*}+\mathrm{c}.\mathrm{c}.$ and ${e}^{+}{e}^{{-}}{\rightarrow}{B}_{s1}{\overline{B}}_{s}+\mathrm{c}.\mathrm{c}.$ in the $B$ sector.},
doi = {10.1103/physrevd.97.034008},
journal = {Physical Review D},
number = 3,
volume = 97,
place = {United States},
year = {2018},
month = {2}
}