DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All‐Solid‐State Sodium Batteries

Abstract

Abstract All‐solid‐state sodium batteries (ASSSBs) with nonflammable electrolytes and ubiquitous sodium resource are a promising solution to the safety and cost concerns for lithium‐ion batteries. However, the intrinsic mismatch between low anodic decomposition potential of superionic sulfide electrolytes and high operating potentials of sodium‐ion cathodes leads to a volatile cathode–electrolyte interface and undesirable cell performance. Here we report a high‐capacity organic cathode, Na 4 C 6 O 6 , that is chemically and electrochemically compatible with sulfide electrolytes. A bulk‐type ASSSB shows high specific capacity (184 mAh g −1 ) and one of the highest specific energies (395 Wh kg −1 ) among intercalation compound‐based ASSSBs. The capacity retentions of 76 % after 100 cycles at 0.1 C and 70 % after 400 cycles at 0.2 C represent the record stability for ASSSBs. Additionally, Na 4 C 6 O 6 functions as a capable anode material, enabling a symmetric all‐organic ASSSB with Na 4 C 6 O 6 as both cathode and anode materials.

Authors:
 [1];  [1];  [1];  [1];  [2];  [1];  [1];  [2]; ORCiD logo [1]
  1. Department of Electrical and Computer Engineering and Materials Science and Engineering Program University of Houston Houston TX 77204 USA
  2. Department of Mechanical Engineering University of Colorado at Boulder Boulder CO 80309 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1419899
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Angewandte Chemie
Additional Journal Information:
Journal Name: Angewandte Chemie Journal Volume: 130 Journal Issue: 10; Journal ID: ISSN 0044-8249
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Chi, Xiaowei, Liang, Yanliang, Hao, Fang, Zhang, Ye, Whiteley, Justin, Dong, Hui, Hu, Pu, Lee, Sehee, and Yao, Yan. Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All‐Solid‐State Sodium Batteries. Germany: N. p., 2018. Web. doi:10.1002/ange.201712895.
Chi, Xiaowei, Liang, Yanliang, Hao, Fang, Zhang, Ye, Whiteley, Justin, Dong, Hui, Hu, Pu, Lee, Sehee, & Yao, Yan. Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All‐Solid‐State Sodium Batteries. Germany. https://doi.org/10.1002/ange.201712895
Chi, Xiaowei, Liang, Yanliang, Hao, Fang, Zhang, Ye, Whiteley, Justin, Dong, Hui, Hu, Pu, Lee, Sehee, and Yao, Yan. Thu . "Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All‐Solid‐State Sodium Batteries". Germany. https://doi.org/10.1002/ange.201712895.
@article{osti_1419899,
title = {Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All‐Solid‐State Sodium Batteries},
author = {Chi, Xiaowei and Liang, Yanliang and Hao, Fang and Zhang, Ye and Whiteley, Justin and Dong, Hui and Hu, Pu and Lee, Sehee and Yao, Yan},
abstractNote = {Abstract All‐solid‐state sodium batteries (ASSSBs) with nonflammable electrolytes and ubiquitous sodium resource are a promising solution to the safety and cost concerns for lithium‐ion batteries. However, the intrinsic mismatch between low anodic decomposition potential of superionic sulfide electrolytes and high operating potentials of sodium‐ion cathodes leads to a volatile cathode–electrolyte interface and undesirable cell performance. Here we report a high‐capacity organic cathode, Na 4 C 6 O 6 , that is chemically and electrochemically compatible with sulfide electrolytes. A bulk‐type ASSSB shows high specific capacity (184 mAh g −1 ) and one of the highest specific energies (395 Wh kg −1 ) among intercalation compound‐based ASSSBs. The capacity retentions of 76 % after 100 cycles at 0.1 C and 70 % after 400 cycles at 0.2 C represent the record stability for ASSSBs. Additionally, Na 4 C 6 O 6 functions as a capable anode material, enabling a symmetric all‐organic ASSSB with Na 4 C 6 O 6 as both cathode and anode materials.},
doi = {10.1002/ange.201712895},
journal = {Angewandte Chemie},
number = 10,
volume = 130,
place = {Germany},
year = {Thu Feb 08 00:00:00 EST 2018},
month = {Thu Feb 08 00:00:00 EST 2018}
}

Works referenced in this record:

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Sodium-ion Conducting Na 3 PS 4 Electrolyte Synthesized via a Liquid-phase Process Using N -Methylformamide
journal, July 2015

  • Yubuchi, So; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Chemistry Letters, Vol. 44, Issue 7
  • DOI: 10.1246/cl.150195

Compatibility issues between electrodes and electrolytes in solid-state batteries
journal, January 2017

  • Tian, Yaosen; Shi, Tan; Richards, William D.
  • Energy & Environmental Science, Vol. 10, Issue 5
  • DOI: 10.1039/C7EE00534B

Na 3 SbS 4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries
journal, July 2016

  • Banerjee, Abhik; Park, Kern Ho; Heo, Jongwook W.
  • Angewandte Chemie, Vol. 128, Issue 33
  • DOI: 10.1002/ange.201604158

High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4
journal, July 2014


Ambient Temperature Cycling of an Na-TiS[sub 2] Cell
journal, January 1980

  • Newman, Gerald H.
  • Journal of The Electrochemical Society, Vol. 127, Issue 10
  • DOI: 10.1149/1.2129353

All-Solid-State Na/S Batteries with a Na 3 PS 4 Electrolyte Operating at Room Temperature
journal, May 2017


The Reaction Mechanism and Capacity Degradation Model in Lithium Insertion Organic Cathodes, Li 2 C 6 O 6 , Using Combined Experimental and First Principle Studies
journal, August 2014

  • Kim, Haegyeom; Seo, Dong-Hwa; Yoon, Gabin
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 17
  • DOI: 10.1021/jz501557n

A review of lithium and non-lithium based solid state batteries
journal, May 2015


Exceptionally High Ionic Conductivity in Na 3 P 0.62 As 0.38 S 4 with Improved Moisture Stability for Solid-State Sodium-Ion Batteries
journal, February 2017

  • Yu, Zhaoxin; Shang, Shun-Li; Seo, Joo-Hwan
  • Advanced Materials, Vol. 29, Issue 16
  • DOI: 10.1002/adma.201605561

M(C6X6Li6)2 (M=Cr, Mo, W; X=O, S): Transition-metal sandwich complexes with π-aromatic C6X6Li6 ligands
journal, August 2013


A solid future for battery development
journal, September 2016


Electrochemical Properties and Discharge Mechanism of Na/TiS 2 Cells with Liquid Electrolyte at Room Temperature
journal, December 2012

  • Ryu, Ho-Suk; Kim, Jong-Seon; Park, Jin-Soo
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.084302jes

High-performance sodium–organic battery by realizing four-sodium storage in disodium rhodizonate
journal, October 2017


Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor
journal, September 2016

  • Chu, Iek-Heng; Kompella, Christopher S.; Nguyen, Han
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep33733

Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries
journal, April 2017


Challenges for Na-ion Negative Electrodes
journal, January 2011

  • Chevrier, V. L.; Ceder, G.
  • Journal of The Electrochemical Society, Vol. 158, Issue 9
  • DOI: 10.1149/1.3607983

Lithium Salt of Tetrahydroxybenzoquinone: Toward the Development of a Sustainable Li-Ion Battery
journal, July 2009

  • Chen, Haiyan; Armand, Michel; Courty, Matthieu
  • Journal of the American Chemical Society, Vol. 131, Issue 25
  • DOI: 10.1021/ja9024897

Cross-conjugated oligomeric quinones for high performance organic batteries
journal, July 2017


Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery
journal, July 2013

  • Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02261

A hybrid solid electrolyte for flexible solid-state sodium batteries
journal, January 2015

  • Kim, Jae-Kwang; Lim, Young Jun; Kim, Hyojin
  • Energy & Environmental Science, Vol. 8, Issue 12
  • DOI: 10.1039/C5EE01941A

Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries
journal, March 2015


Na 3 SbS 4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries
journal, July 2016

  • Banerjee, Abhik; Park, Kern Ho; Heo, Jongwook W.
  • Angewandte Chemie International Edition, Vol. 55, Issue 33
  • DOI: 10.1002/anie.201604158

Carbonyls: Powerful Organic Materials for Secondary Batteries
journal, April 2015

  • Häupler, Bernhard; Wild, Andreas; Schubert, Ulrich S.
  • Advanced Energy Materials, Vol. 5, Issue 11
  • DOI: 10.1002/aenm.201402034

Discharge properties of all-solid sodium–sulfur battery using poly (ethylene oxide) electrolyte
journal, February 2007


LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries
journal, July 2007


Advanced Organic Electrode Materials for Rechargeable Sodium-Ion Batteries
journal, December 2016


A Self-Forming Composite Electrolyte for Solid-State Sodium Battery with Ultralong Cycle Life
journal, October 2016

  • Zhang, Zhizhen; Zhang, Qinghua; Shi, Jinan
  • Advanced Energy Materials, Vol. 7, Issue 4
  • DOI: 10.1002/aenm.201601196

Universal quinone electrodes for long cycle life aqueous rechargeable batteries
journal, June 2017

  • Liang, Yanliang; Jing, Yan; Gheytani, Saman
  • Nature Materials, Vol. 16, Issue 8
  • DOI: 10.1038/nmat4919

Organic Electrode Materials for Rechargeable Lithium Batteries
journal, May 2012

  • Liang, Yanliang; Tao, Zhanliang; Chen, Jun
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201100795

Vibrational spectra and structure of the rhodizonate dianion
journal, January 1971


High-Performance All-Inorganic Solid-State Sodium–Sulfur Battery
journal, April 2017


Issues and Challenges for Bulk-Type All-Solid-State Rechargeable Lithium Batteries using Sulfide Solid Electrolytes
journal, January 2015

  • Jung, Yoon Seok; Oh, Dae Yang; Nam, Young Jin
  • Israel Journal of Chemistry, Vol. 55, Issue 5
  • DOI: 10.1002/ijch.201400112

Cathode properties of Na2C6O6 for sodium-ion batteries
journal, November 2013


Evaluation of mechanical properties of Na 2 S–P 2 S 5 sulfide glass electrolytes
journal, January 2015

  • Nose, Masashi; Kato, Atsutaka; Sakuda, Atsushi
  • Journal of Materials Chemistry A, Vol. 3, Issue 44
  • DOI: 10.1039/C5TA05590C

Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries
journal, January 2012

  • Hayashi, Akitoshi; Noi, Kousuke; Sakuda, Atsushi
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1843

A review of conduction phenomena in Li-ion batteries
journal, December 2010


First-Principles Investigation of a Phase Transition in Na x C 6 O 6 as an Organic Cathode Material for Na-ion Batteries: Role of Intermolecule Bonding of C 6 O 6
journal, July 2015

  • Yamashita, Tomoki; Momida, Hiroyoshi; Oguchi, Tamio
  • Journal of the Physical Society of Japan, Vol. 84, Issue 7
  • DOI: 10.7566/JPSJ.84.074703

Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries
journal, September 2015


From Biomass to a Renewable LiXC6O6 Organic Electrode for Sustainable Li-Ion Batteries
journal, April 2008


Interfacial Reactivity Benchmarking of the Sodium Ion Conductors Na 3 PS 4 and Sodium β-Alumina for Protected Sodium Metal Anodes and Sodium All-Solid-State Batteries
journal, October 2016

  • Wenzel, Sebastian; Leichtweiss, Thomas; Weber, Dominik A.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 41
  • DOI: 10.1021/acsami.6b10119

Probing Solid–Solid Interfacial Reactions in All-Solid-State Sodium-Ion Batteries with First-Principles Calculations
journal, December 2017