Effect of polarization forces on carbon deposition on a non-spherical nanoparticle. Monte Carlo simulations [Effect of polarization forces on atom deposition on a non-spherical nanoparticle. Monte Carlo simulations]
- Keiser Univ., Fort Lauderdale, FL (United States)
- Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Trajectories of a polarizable species (atoms or molecules) in the vicinity of a negatively charged nanoparticle (at a floating potential) are considered. The atoms are pulled into regions of strong electric field by polarization forces. The polarization increases the deposition rate of the atoms and molecules at the nanoparticle. The effect of the non-spherical shape of the nanoparticle is investigated by the Monte Carlo method. The shape of the non-spherical nanoparticle is approximated by an ellipsoid. The total deposition rate and its flux density distribution along the nanoparticle surface are calculated. As a result, it is shown that the flux density is not uniform along the surface. It is maximal at the nanoparticle tips.
- Research Organization:
- Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Fusion Energy Sciences (FES)
- Grant/Contract Number:
- AC02-09CH11466
- OSTI ID:
- 1419800
- Alternate ID(s):
- OSTI ID: 1419107
- Journal Information:
- Physics of Plasmas, Vol. 25, Issue 2; ISSN 1070-664X
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Dynamic modeling of carbon nanofiber growth in strong electric fields via plasma-enhanced chemical vapor deposition
|
journal | May 2019 |
Similar Records
Effect of Solvent Composition on Non-DLVO Forces and Oriented Attachment of Zinc Oxide Nanoparticles
Monte Carlo Micro-Solvation Simulations For Excited States using a Mixed-Hamiltonian Model with Polarizable and Vibrating Waters: Application to the Blueshift of the H2CO (1)(pi(*)<-n) Excitation.