DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In situ TEM probing of crystallization form-dependent sodiation behavior in ZnO nanowires for sodium-ion batteries

Abstract

Development of sodium-ion battery (SIB) electrode materials currently lags behind electrodes in commercial lithium-ion batteries (LIBs). However, in the long term, development of SIB components is a valuable goal. Their similar, but not identical, chemistries require careful identification of the underlying sodiation mechanism in SIBs. Here in this study, we utilize in situ transmission electron microscopy to explore quite different sodiation behaviors even in similar electrode materials through real-time visualization of microstructure and phase evolution. Upon electrochemical sodiation, single-crystalline ZnO nanowires (sc-ZNWs) are found to undergo a step-by-step electrochemical displacement reaction, forming crystalline NaZn13 nanograins dispersed in a Na2O matrix. This process is characterized by a slowly propagating reaction front and the formation of heterogeneous interfaces inside the ZNWs due to non-uniform sodiation amorphization. In contrast, poly-crystalline ZNWs (pc-ZNWs) exhibited an ultrafast sodiation process, which can partly be ascribed to the availability of unobstructed ionic transport pathways among ZnO nanograins. Thus the reaction front and heterogeneous interfaces disappear. The in situ TEM results, supported by calculation of the ion diffusion coefficient, provide breakthrough insights into the dependence of ion diffusion kinetics on crystallization form. This points toward a goal of optimizing the microstructure of electrode materials in order to developmore » high performance SIBs.« less

Authors:
 [1];  [2];  [3];  [3];  [4];  [2];  [5];  [2];  [3]
  1. Southeast Univ., Nanjing (China). Key Lab. of MEMS of the Ministry of Education, SEU-FEI Nano-Pico Center; Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Matter Physics and Materials Science Dept.
  2. Southeast Univ., Nanjing (China). Key Lab. of MEMS of the Ministry of Education, SEU-FEI Nano-Pico Center
  3. Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Matter Physics and Materials Science Dept.
  4. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
  5. Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Physics
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1372427
Alternate Identifier(s):
OSTI ID: 1419585
Report Number(s):
BNL-113854-2017-JA
Journal ID: ISSN 2211-2855; R&D Project: MA015MACA; KC0201010
Grant/Contract Number:  
SC0012704; AC02-98CH10886; SC0012704l
Resource Type:
Accepted Manuscript
Journal Name:
Nano Energy
Additional Journal Information:
Journal Volume: 30; Journal Issue: C; Journal ID: ISSN 2211-2855
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; Sodium-ion batteries; In situ transmission electron microscopy; ZnO nanowires; Electrochemical sodiation; Microstructure control

Citation Formats

Xu, Feng, Li, Zhengrui, Wu, Lijun, Meng, Qingping, Xin, Huolin L., Sun, Jun, Ge, Binghui, Sun, Litao, and Zhu, Yimei. In situ TEM probing of crystallization form-dependent sodiation behavior in ZnO nanowires for sodium-ion batteries. United States: N. p., 2016. Web. doi:10.1016/j.nanoen.2016.09.020.
Xu, Feng, Li, Zhengrui, Wu, Lijun, Meng, Qingping, Xin, Huolin L., Sun, Jun, Ge, Binghui, Sun, Litao, & Zhu, Yimei. In situ TEM probing of crystallization form-dependent sodiation behavior in ZnO nanowires for sodium-ion batteries. United States. https://doi.org/10.1016/j.nanoen.2016.09.020
Xu, Feng, Li, Zhengrui, Wu, Lijun, Meng, Qingping, Xin, Huolin L., Sun, Jun, Ge, Binghui, Sun, Litao, and Zhu, Yimei. Tue . "In situ TEM probing of crystallization form-dependent sodiation behavior in ZnO nanowires for sodium-ion batteries". United States. https://doi.org/10.1016/j.nanoen.2016.09.020. https://www.osti.gov/servlets/purl/1372427.
@article{osti_1372427,
title = {In situ TEM probing of crystallization form-dependent sodiation behavior in ZnO nanowires for sodium-ion batteries},
author = {Xu, Feng and Li, Zhengrui and Wu, Lijun and Meng, Qingping and Xin, Huolin L. and Sun, Jun and Ge, Binghui and Sun, Litao and Zhu, Yimei},
abstractNote = {Development of sodium-ion battery (SIB) electrode materials currently lags behind electrodes in commercial lithium-ion batteries (LIBs). However, in the long term, development of SIB components is a valuable goal. Their similar, but not identical, chemistries require careful identification of the underlying sodiation mechanism in SIBs. Here in this study, we utilize in situ transmission electron microscopy to explore quite different sodiation behaviors even in similar electrode materials through real-time visualization of microstructure and phase evolution. Upon electrochemical sodiation, single-crystalline ZnO nanowires (sc-ZNWs) are found to undergo a step-by-step electrochemical displacement reaction, forming crystalline NaZn13 nanograins dispersed in a Na2O matrix. This process is characterized by a slowly propagating reaction front and the formation of heterogeneous interfaces inside the ZNWs due to non-uniform sodiation amorphization. In contrast, poly-crystalline ZNWs (pc-ZNWs) exhibited an ultrafast sodiation process, which can partly be ascribed to the availability of unobstructed ionic transport pathways among ZnO nanograins. Thus the reaction front and heterogeneous interfaces disappear. The in situ TEM results, supported by calculation of the ion diffusion coefficient, provide breakthrough insights into the dependence of ion diffusion kinetics on crystallization form. This points toward a goal of optimizing the microstructure of electrode materials in order to develop high performance SIBs.},
doi = {10.1016/j.nanoen.2016.09.020},
journal = {Nano Energy},
number = C,
volume = 30,
place = {United States},
year = {Tue Sep 13 00:00:00 EDT 2016},
month = {Tue Sep 13 00:00:00 EDT 2016}
}

Journal Article:

Citation Metrics:
Cited by: 52 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Enhancing sodium-ion battery performance with interlayer-expanded MoS2–PEO nanocomposites
journal, July 2015


Improved electrochemical performance of nitrogen doped TiO 2 -B nanowires as anode materials for Li-ion batteries
journal, January 2015

  • Zhang, Yongquan; Fu, Qiang; Xu, Qiaoling
  • Nanoscale, Vol. 7, Issue 28
  • DOI: 10.1039/C5NR02457A

High-Performance Sodium Ion Batteries Based on a 3D Anode from Nitrogen-Doped Graphene Foams
journal, February 2015

  • Xu, Jiantie; Wang, Min; Wickramaratne, Nilantha P.
  • Advanced Materials, Vol. 27, Issue 12
  • DOI: 10.1002/adma.201405370

Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries
journal, August 2011

  • Komaba, Shinichi; Murata, Wataru; Ishikawa, Toru
  • Advanced Functional Materials, Vol. 21, Issue 20
  • DOI: 10.1002/adfm.201100854

Ethylene glycol-assisted nanocrystallization of LiFePO4 for a rechargeable lithium-ion battery cathode
journal, January 2012

  • Kang, Wenpei; Zhao, Chenhao; Liu, Rui
  • CrystEngComm, Vol. 14, Issue 6
  • DOI: 10.1039/c2ce06423e

High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte
journal, February 2013


Challenges for Na-ion Negative Electrodes
journal, January 2011

  • Chevrier, V. L.; Ceder, G.
  • Journal of The Electrochemical Society, Vol. 158, Issue 9
  • DOI: 10.1149/1.3607983

Cu 3 P Binary Phosphide: Synthesis via a Wet Mechanochemical Method and Electrochemical Behavior as Negative Electrode Material for Lithium-Ion Batteries
journal, September 2012

  • Stan, Marian Cristian; Klöpsch, Richard; Bhaskar, Aiswarya
  • Advanced Energy Materials, Vol. 3, Issue 2
  • DOI: 10.1002/aenm.201200655

Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials
journal, January 2011

  • Ong, Shyue Ping; Chevrier, Vincent L.; Hautier, Geoffroy
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01782a

Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li[sub 3]Sb
journal, January 1977

  • Weppner, W.
  • Journal of The Electrochemical Society, Vol. 124, Issue 10
  • DOI: 10.1149/1.2133112

In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode
journal, December 2010


Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance
journal, May 2015


A novel ZnO nanostructure: rhombus-shaped ZnO nanorod array
journal, January 2010

  • Xu, Feng; Lu, Yinong; Sun, Litao
  • Chemical Communications, Vol. 46, Issue 18
  • DOI: 10.1039/b926343h

Hollandite-type TiO2: a new negative electrode material for sodium-ion batteries
journal, January 2014

  • Pérez-Flores, J. C.; Baehtz, C.; Kuhn, A.
  • Journal of Materials Chemistry A, Vol. 2, Issue 6, p. 1825-1833
  • DOI: 10.1039/C3TA13394J

Electrochemical investigation of sodium reactivity with nanostructured Co 3 O 4 for sodium-ion batteries
journal, January 2014

  • Rahman, Md Mokhlesur; Glushenkov, Alexey M.; Ramireddy, Thrinathreddy
  • Chem. Commun., Vol. 50, Issue 39
  • DOI: 10.1039/C4CC01033G

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

Sodiation via Heterogeneous Disproportionation in FeF 2 Electrodes for Sodium-Ion Batteries
journal, June 2014

  • He, Kai; Zhou, Yongning; Gao, Peng
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn502284y

Highly Porous NiCo 2 O 4 Nanoflakes and Nanobelts as Anode Materials for Lithium-Ion Batteries with Excellent Rate Capability
journal, August 2014

  • Mondal, Anjon Kumar; Su, Dawei; Chen, Shuangqiang
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 17
  • DOI: 10.1021/am5036913

Leapfrog Cracking and Nanoamorphization of ZnO Nanowires during In Situ Electrochemical Lithiation
journal, November 2011

  • Kushima, Akihiro; Liu, Xiao Hua; Zhu, Guang
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl201376j

Probing the Failure Mechanism of SnO 2 Nanowires for Sodium-Ion Batteries
journal, October 2013

  • Gu, Meng; Kushima, Akihiro; Shao, Yuyan
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl402633n

Fluorine-Ion-Mediated Electrodeposition of Rhombus-Like ZnFOH Nanorod Arrays: An Intermediate Route to Novel ZnO Nanoarchitectures
journal, August 2010

  • Xu, Feng; Sun, Litao; Dai, Min
  • The Journal of Physical Chemistry C, Vol. 114, Issue 36
  • DOI: 10.1021/jp1066082

Is lithium the new gold?
journal, June 2010


A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries
journal, September 2015


Fe 2 O 3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries
journal, January 2014

  • Jian, Zelang; Zhao, Bin; Liu, Pan
  • Chem. Commun., Vol. 50, Issue 10
  • DOI: 10.1039/C3CC47977C

Determination of sodium ion diffusion coefficients in sodium vanadium phosphate
journal, December 2013

  • Böckenfeld, Nils; Balducci, Andrea
  • Journal of Solid State Electrochemistry, Vol. 18, Issue 4
  • DOI: 10.1007/s10008-013-2342-6

Thermodynamic and Mass Transport Properties of “LiAl”
journal, January 1979

  • Wen, C. John
  • Journal of The Electrochemical Society, Vol. 126, Issue 12
  • DOI: 10.1149/1.2128939

Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
journal, May 2012

  • Kim, Sung-Wook; Seo, Dong-Hwa; Ma, Xiaohua
  • Advanced Energy Materials, Vol. 2, Issue 7, p. 710-721
  • DOI: 10.1002/aenm.201200026

Diffusion and ionic conduction in nanocrystalline ceramics
journal, July 2003


Hard Carbon Microspheres: Potassium-Ion Anode Versus Sodium-Ion Anode
journal, November 2015

  • Jian, Zelang; Xing, Zhenyu; Bommier, Clement
  • Advanced Energy Materials, Vol. 6, Issue 3
  • DOI: 10.1002/aenm.201501874

Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins
journal, January 2013

  • Zhu, Xiaojian; Ong, Chin Shen; Xu, Xiaoxiong
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01084

Works referencing / citing this record:

A 1D Honeycomb‐Like Amorphous Zincic Vanadate for Stable and Fast Sodium‐Ion Storage
journal, January 2020


Na-Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation
journal, July 2017

  • Muñoz-Márquez, Miguel Ángel; Saurel, Damien; Gómez-Cámer, Juan Luis
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201700463

Nanostructured Conversion-Type Negative Electrode Materials for Low-Cost and High-Performance Sodium-Ion Batteries
journal, August 2018

  • Wei, Xiujuan; Wang, Xuanpeng; Tan, Xin
  • Advanced Functional Materials, Vol. 28, Issue 46
  • DOI: 10.1002/adfm.201804458

Recent Progress of In Situ Transmission Electron Microscopy for Energy Materials
journal, September 2019

  • Zhang, Chao; Firestein, Konstantin L.; Fernando, Joseph F. S.
  • Advanced Materials, Vol. 32, Issue 18
  • DOI: 10.1002/adma.201904094

Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: promising anode materials for sodium and potassium ion batteries
journal, January 2018

  • Yan, Chunliu; Gu, Xin; Zhang, Li
  • Journal of Materials Chemistry A, Vol. 6, Issue 36
  • DOI: 10.1039/c8ta05297b

MOF-derived and nitrogen-doped ZnSe polyhedra encapsulated by reduced graphene oxide as the anode for lithium and sodium storage
journal, January 2018

  • Liu, Xiaobin; Liu, Yongchang; Feng, Ming
  • Journal of Materials Chemistry A, Vol. 6, Issue 46
  • DOI: 10.1039/c8ta09247h

In Situ TEM Investigation of ZnO Nanowires during Sodiation and Lithiation Cycling
journal, August 2017

  • Asayesh-Ardakani, Hasti; Yao, Wentao; Yuan, Yifei
  • Small Methods, Vol. 1, Issue 9
  • DOI: 10.1002/smtd.201700202

Zinc Ferrite Nanorod‐Assembled Mesoporous Microspheres as Advanced Anode Materials for Sodium‐Ion Batteries
journal, August 2019


Enhanced Interfacial Kinetics of Carbon Monolith Boosting Ultrafast Na‐Storage
journal, December 2018


Three-Dimensional ZnO Hierarchical Nanostructures: Solution Phase Synthesis and Applications
journal, November 2017

  • Wang, Xiaoliang; Ahmad, Mashkoor; Sun, Hongyu
  • Materials, Vol. 10, Issue 11
  • DOI: 10.3390/ma10111304

ZnO/rGO/C composites derived from metal–organic framework as advanced anode materials for Li-ion and Na-ion batteries
journal, January 2018