DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials

Abstract

Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and rate performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3];  [1];  [1]; ORCiD logo [3];  [4];  [5]
  1. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
  2. Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)
  4. Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Storage and Distributed Resources Division
  5. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Division
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1419450
Grant/Contract Number:  
AC02-05CH11231; DGE-1106400
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Batteries

Citation Formats

Lee, Jinhyuk, Papp, Joseph K., Clément, Raphaële J., Sallis, Shawn, Kwon, Deok-Hwang, Shi, Tan, Yang, Wanli, McCloskey, Bryan D., and Ceder, Gerbrand. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials. United States: N. p., 2017. Web. doi:10.1038/s41467-017-01115-0.
Lee, Jinhyuk, Papp, Joseph K., Clément, Raphaële J., Sallis, Shawn, Kwon, Deok-Hwang, Shi, Tan, Yang, Wanli, McCloskey, Bryan D., & Ceder, Gerbrand. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials. United States. https://doi.org/10.1038/s41467-017-01115-0
Lee, Jinhyuk, Papp, Joseph K., Clément, Raphaële J., Sallis, Shawn, Kwon, Deok-Hwang, Shi, Tan, Yang, Wanli, McCloskey, Bryan D., and Ceder, Gerbrand. Tue . "Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials". United States. https://doi.org/10.1038/s41467-017-01115-0. https://www.osti.gov/servlets/purl/1419450.
@article{osti_1419450,
title = {Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials},
author = {Lee, Jinhyuk and Papp, Joseph K. and Clément, Raphaële J. and Sallis, Shawn and Kwon, Deok-Hwang and Shi, Tan and Yang, Wanli and McCloskey, Bryan D. and Ceder, Gerbrand},
abstractNote = {Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and rate performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.},
doi = {10.1038/s41467-017-01115-0},
journal = {Nature Communications},
number = 1,
volume = 8,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 163 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Preparation of electrochemically active α-LiFeO2 at low temperature
journal, December 1998


Characterization of Disordered Li (1+ x ) Ti 2 x Fe (1–3 x ) O 2 as Positive Electrode Materials in Li-Ion Batteries Using Percolation Theory
journal, November 2015


Isotropic High Field NMR Spectra of Li-Ion Battery Materials with Anisotropy >1 MHz
journal, January 2012

  • Hung, Ivan; Zhou, Lina; Pourpoint, Frédérique
  • Journal of the American Chemical Society, Vol. 134, Issue 4
  • DOI: 10.1021/ja209600m

Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2
journal, June 2006

  • Armstrong, A. Robert; Holzapfel, Michael; Novák, Petr
  • Journal of the American Chemical Society, Vol. 128, Issue 26
  • DOI: 10.1021/ja062027+

Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li[sub 3]Sb
journal, January 1977

  • Weppner, W.
  • Journal of The Electrochemical Society, Vol. 124, Issue 10
  • DOI: 10.1149/1.2133112

Synthesis and Electrochemical Properties of Layered Li0.9Ni0.45Ti0.55O2
journal, October 2003

  • Kang, Kisuk; Carlier, Dany; Reed, John
  • Chemistry of Materials, Vol. 15, Issue 23
  • DOI: 10.1021/cm034455+

The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

Disordered Lithium-Rich Oxyfluoride as a Stable Host for Enhanced Li + Intercalation Storage
journal, February 2015

  • Chen, Ruiyong; Ren, Shuhua; Knapp, Michael
  • Advanced Energy Materials, Vol. 5, Issue 9
  • DOI: 10.1002/aenm.201401814

Synthesis and electrochemistry of cubic rocksalt Li–Ni–Ti–O compounds in the phase diagram of LiNiO2–LiTiO2–Li[Li1/3Ti2/3]O2
journal, October 2008


Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li[Ni0.2Li0.2Mn0.6]O2
journal, June 2006

  • Armstrong, A. Robert; Holzapfel, Michael; Novák, Petr
  • Journal of the American Chemical Society, Vol. 128, Issue 26
  • DOI: 10.1021/ja062027+

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

Quantitative probe of the transition metal redox in battery electrodes through soft x-ray absorption spectroscopy
journal, September 2016


Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li[sub 3]Sb
journal, January 1977

  • Weppner, W.
  • Journal of The Electrochemical Society, Vol. 124, Issue 10
  • DOI: 10.1149/1.2133112

Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries
journal, January 2014


Battery materials for ultrafast charging and discharging
journal, March 2009

  • Kang, Byoungwoo; Ceder, Gerbrand
  • Nature, Vol. 458, Issue 7235, p. 190-193
  • DOI: 10.1038/nature07853

Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2
journal, August 2016

  • Luo, Kun; Roberts, Matthew R.; Guerrini, Niccoló
  • Journal of the American Chemical Society, Vol. 138, Issue 35
  • DOI: 10.1021/jacs.6b05111

Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O 2 Batteries
journal, March 2012

  • McCloskey, B. D.; Speidel, A.; Scheffler, R.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300243r

Electronic structure of Li-doped NiO
journal, January 1992


Battery materials for ultrafast charging and discharging
journal, March 2009

  • Kang, Byoungwoo; Ceder, Gerbrand
  • Nature, Vol. 458, Issue 7235, p. 190-193
  • DOI: 10.1038/nature07853

Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries
journal, January 2014


Synthesis and electrochemical properties of Li 1.3 Nb 0.3 V 0.4 O 2 as a positive electrode material for rechargeable lithium batteries
journal, January 2016

  • Yabuuchi, Naoaki; Takeuchi, Mitsue; Komaba, Shinichi
  • Chemical Communications, Vol. 52, Issue 10
  • DOI: 10.1039/C5CC08034G

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

Critical Role of Oxygen Evolved from Layered Li–Excess Metal Oxides in Lithium Rechargeable Batteries
journal, July 2012

  • Hong, Jihyun; Lim, Hee-Dae; Lee, Minah
  • Chemistry of Materials, Vol. 24, Issue 14
  • DOI: 10.1021/cm3005634

Why LiFePO 4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation
journal, January 2015

  • Liu, Xiaosong; Wang, Yung Jui; Barbiellini, Bernardo
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 39
  • DOI: 10.1039/C5CP04739K

Anion-redox nanolithia cathodes for Li-ion batteries
journal, July 2016


Synthesis of “Li[sub 1.1](Ni[sub 0.425]Mn[sub 0.425]Co[sub 0.15])[sub 0.9]O[sub 1.8]F[sub 0.2]” Materials by Different Routes: Is There Fluorine Substitution for Oxygen?
journal, January 2009

  • Croguennec, L.; Bains, J.; Ménétrier, M.
  • Journal of The Electrochemical Society, Vol. 156, Issue 5
  • DOI: 10.1149/1.3080659

Direct In situ Observation of Li 2 O Evolution on Li-Rich High-Capacity Cathode Material, Li[Ni x Li (1–2 x )/3 Mn (2– x )/3 ]O 2 (0 ≤ x ≤0.5)
journal, January 2014

  • Hy, Sunny; Felix, Felix; Rick, John
  • Journal of the American Chemical Society, Vol. 136, Issue 3
  • DOI: 10.1021/ja410137s

NMR evidence of LiF coating rather than fluorine substitution in Li(Ni0.425Mn0.425Co0.15)O2
journal, December 2008


The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source
journal, March 2017

  • Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing
  • Review of Scientific Instruments, Vol. 88, Issue 3
  • DOI: 10.1063/1.4977592

High-capacity electrode materials for rechargeable lithium batteries: Li 3 NbO 4 -based system with cation-disordered rocksalt structure
journal, June 2015

  • Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 25
  • DOI: 10.1073/pnas.1504901112

A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides
journal, January 2015

  • Lee, Jinhyuk; Seo, Dong-Hwa; Balasubramanian, Mahalingam
  • Energy & Environmental Science, Vol. 8, Issue 11
  • DOI: 10.1039/C5EE02329G

On the Efficacy of Electrocatalysis in Nonaqueous Li–O 2 Batteries
journal, November 2011

  • McCloskey, Bryan D.; Scheffler, Rouven; Speidel, Angela
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja207229n

Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

First-Principles Prediction of Vacancy Order-Disorder and Intercalation Battery Voltages in Li x CoO 2
journal, July 1998


On the Efficacy of Electrocatalysis in Nonaqueous Li–O 2 Batteries
journal, November 2011

  • McCloskey, Bryan D.; Scheffler, Rouven; Speidel, Angela
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja207229n

Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries
journal, December 2016

  • Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13814

Synthesis and Electrochemical Properties of Li 4 MoO 5 –NiO Binary System as Positive Electrode Materials for Rechargeable Lithium Batteries
journal, January 2016


Synthesis and Electrochemical Properties of Li 4 MoO 5 –NiO Binary System as Positive Electrode Materials for Rechargeable Lithium Batteries
journal, January 2016


The Effect of Antisite Disorder and Particle Size on Li Intercalation Kinetics in Monoclinic LiMnBO 3
journal, January 2015

  • Kim, Jae Chul; Seo, Dong-Hwa; Chen, Hailong
  • Advanced Energy Materials, Vol. 5, Issue 8
  • DOI: 10.1002/aenm.201401916

Oxidative Degradation of the Monolayer of 1-Palmitoyl-2-Oleoyl- sn -Glycero-3-Phosphocholine (POPC) in Low-Level Ozone
journal, October 2015

  • Qiao, Lin; Ge, Aimin; Liang, Yimin
  • The Journal of Physical Chemistry B, Vol. 119, Issue 44
  • DOI: 10.1021/acs.jpcb.5b08985

Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry
journal, May 2011

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 10, p. 1161-1166
  • DOI: 10.1021/jz200352v

Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides
journal, July 1997


Identification of cathode materials for lithium batteries guided by first-principles calculations
journal, April 1998

  • Ceder, G.; Chiang, Y. -M.; Sadoway, D. R.
  • Nature, Vol. 392, Issue 6677
  • DOI: 10.1038/33647

NMR evidence of LiF coating rather than fluorine substitution in Li(Ni0.425Mn0.425Co0.15)O2
journal, December 2008


The Configurational Space of Rocksalt-Type Oxides for High-Capacity Lithium Battery Electrodes
journal, May 2014

  • Urban, Alexander; Lee, Jinhyuk; Ceder, Gerbrand
  • Advanced Energy Materials, Vol. 4, Issue 13
  • DOI: 10.1002/aenm.201400478

Oxidative Degradation of the Monolayer of 1-Palmitoyl-2-Oleoyl- sn -Glycero-3-Phosphocholine (POPC) in Low-Level Ozone
journal, October 2015

  • Qiao, Lin; Ge, Aimin; Liang, Yimin
  • The Journal of Physical Chemistry B, Vol. 119, Issue 44
  • DOI: 10.1021/acs.jpcb.5b08985

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

High-capacity electrode materials for rechargeable lithium batteries: Li 3 NbO 4 -based system with cation-disordered rocksalt structure
journal, June 2015

  • Yabuuchi, Naoaki; Takeuchi, Mitsue; Nakayama, Masanobu
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 25
  • DOI: 10.1073/pnas.1504901112

Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries
journal, December 2016

  • Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13814

Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry
journal, May 2011

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 10, p. 1161-1166
  • DOI: 10.1021/jz200352v

Characterization of Disordered Li (1+ x ) Ti 2 x Fe (1–3 x ) O 2 as Positive Electrode Materials in Li-Ion Batteries Using Percolation Theory
journal, November 2015


Anion-redox nanolithia cathodes for Li-ion batteries
journal, July 2016


Disordered Lithium-Rich Oxyfluoride as a Stable Host for Enhanced Li + Intercalation Storage
journal, February 2015

  • Chen, Ruiyong; Ren, Shuhua; Knapp, Michael
  • Advanced Energy Materials, Vol. 5, Issue 9
  • DOI: 10.1002/aenm.201401814

The Effect of Antisite Disorder and Particle Size on Li Intercalation Kinetics in Monoclinic LiMnBO 3
journal, January 2015

  • Kim, Jae Chul; Seo, Dong-Hwa; Chen, Hailong
  • Advanced Energy Materials, Vol. 5, Issue 8
  • DOI: 10.1002/aenm.201401916

Quantitative probe of the transition metal redox in battery electrodes through soft x-ray absorption spectroscopy
journal, September 2016


Works referencing / citing this record:

Micropore-confined amorphous SnO 2 subnanoclusters as robust anode materials for Na-ion capacitors
journal, January 2019

  • Niu, Jin; Liang, Jingjing; Gao, Ang
  • Journal of Materials Chemistry A, Vol. 7, Issue 38
  • DOI: 10.1039/c9ta06964j

Understanding Performance Degradation in Cation‐Disordered Rock‐Salt Oxide Cathodes
journal, July 2019

  • Chen, Dongchang; Kan, Wang Hay; Chen, Guoying
  • Advanced Energy Materials, Vol. 9, Issue 31
  • DOI: 10.1002/aenm.201901255

Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries
journal, February 2019


Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials
journal, April 2018


Ultrahigh power and energy density in partially ordered lithium-ion cathode materials
journal, March 2020


Effect of Fluorination on Lithium Transport and Short‐Range Order in Disordered‐Rocksalt‐Type Lithium‐Ion Battery Cathodes
journal, March 2020

  • Ouyang, Bin; Artrith, Nongnuch; Lun, Zhengyan
  • Advanced Energy Materials, Vol. 10, Issue 10
  • DOI: 10.1002/aenm.201903240

Enhanced Cycling Stability of Cation Disordered Rock-Salt Li1.2Ti0.4Mn0.4O2 Material by Surface Modification With Al2O3
journal, March 2019


F-Doping effects on carbon-coated Li 3 V 2 (PO 4 ) 3 as a cathode for high performance lithium rechargeable batteries: combined experimental and DFT studies
journal, January 2018

  • Wu, Jinggao; Xu, Maowen; Tang, Chun
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 22
  • DOI: 10.1039/c8cp00354h

Kathodenmaterialien für wiederaufladbare Lithiumbatterien
journal, November 2019

  • Lee, Wontae; Muhammad, Shoaib; Sergey, Chernov
  • Angewandte Chemie, Vol. 132, Issue 7
  • DOI: 10.1002/ange.201902359

Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes
journal, March 2018


Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodes
journal, January 2019

  • Baur, Christian; Källquist, Ida; Chable, Johann
  • Journal of Materials Chemistry A, Vol. 7, Issue 37
  • DOI: 10.1039/c9ta06291b

Advances in the Cathode Materials for Lithium Rechargeable Batteries
journal, February 2020

  • Lee, Wontae; Muhammad, Shoaib; Sergey, Chernov
  • Angewandte Chemie International Edition, Vol. 59, Issue 7
  • DOI: 10.1002/anie.201902359

Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries
journal, February 2019


Amorphous Ni‐Rich Li(Ni 1− x y Mn x Co y )O 2 –Li 2 SO 4 Positive Electrode Materials for Bulk‐Type All‐Oxide Solid‐State Batteries
journal, February 2019

  • Nagao, Kenji; Sakuda, Atsushi; Hayashi, Akitoshi
  • Advanced Materials Interfaces, Vol. 6, Issue 8
  • DOI: 10.1002/admi.201802016

Three-dimensional SWCNT and MWCNT hybrid networks for extremely high-loading and high rate cathode materials
journal, January 2019

  • Kim, Dae-wook; Zettsu, Nobuyuki; Teshima, Katsuya
  • Journal of Materials Chemistry A, Vol. 7, Issue 29
  • DOI: 10.1039/c9ta03870a