DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes

Abstract

Lithium-ion battery electrodes exhibit complex interplay among multiple electrochemically coupled transport processes, which rely on the underlying functionality and relative arrangement of different constituent phases. The electrochemically inactive solid phases (e.g., conductive additive and binder, referred to as the secondary phase), while beneficial for improved electronic conductivity and mechanical integrity, may partially block the electrochemically active sites and introduce additional transport resistances in the pore (electrolyte) phase. In this work, the role of mesoscale interactions and inherent stochasticity in porous electrodes is elucidated in the context of short-range (interface) and long-range (transport) characteristics. The electrode microstructure significantly affects kinetically and transport-limiting scenarios and thereby the cell performance. The secondary-phase morphology is also found to strongly influence the microstructure-transport-kinetics interactions. Apropos, strategies have been proposed for performance improvement via electrode microstructural modifications.

Authors:
 [1];  [2]; ORCiD logo [1]
  1. Purdue Univ., West Lafayette, IN (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Laboratory (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1419417
Report Number(s):
NREL/JA-5400-70743
Journal ID: ISSN 1944-8244
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 10; Journal Issue: 7; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; conductive binder; electrochemically active area; electrode microstructural characterization; Li-ion battery; porous composite electrode; secondary-phase morphology

Citation Formats

Mistry, Aashutosh N., Smith, Kandler, and Mukherjee, Partha P. Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes. United States: N. p., 2018. Web. doi:10.1021/acsami.7b17771.
Mistry, Aashutosh N., Smith, Kandler, & Mukherjee, Partha P. Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes. United States. https://doi.org/10.1021/acsami.7b17771
Mistry, Aashutosh N., Smith, Kandler, and Mukherjee, Partha P. Fri . "Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes". United States. https://doi.org/10.1021/acsami.7b17771. https://www.osti.gov/servlets/purl/1419417.
@article{osti_1419417,
title = {Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes},
author = {Mistry, Aashutosh N. and Smith, Kandler and Mukherjee, Partha P.},
abstractNote = {Lithium-ion battery electrodes exhibit complex interplay among multiple electrochemically coupled transport processes, which rely on the underlying functionality and relative arrangement of different constituent phases. The electrochemically inactive solid phases (e.g., conductive additive and binder, referred to as the secondary phase), while beneficial for improved electronic conductivity and mechanical integrity, may partially block the electrochemically active sites and introduce additional transport resistances in the pore (electrolyte) phase. In this work, the role of mesoscale interactions and inherent stochasticity in porous electrodes is elucidated in the context of short-range (interface) and long-range (transport) characteristics. The electrode microstructure significantly affects kinetically and transport-limiting scenarios and thereby the cell performance. The secondary-phase morphology is also found to strongly influence the microstructure-transport-kinetics interactions. Apropos, strategies have been proposed for performance improvement via electrode microstructural modifications.},
doi = {10.1021/acsami.7b17771},
journal = {ACS Applied Materials and Interfaces},
number = 7,
volume = 10,
place = {United States},
year = {Fri Jan 12 00:00:00 EST 2018},
month = {Fri Jan 12 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 95 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Composite cathode for LIBs is made up of multiple phases: AM particles, conductive additives, binder, and voids for ionic transport. (b) Given the order of magnitude difference in length scales of conductive additives and AM, the distribution of conductive additives + binder (referred to as secondary phasemore » or carbon binder domain) can be jointly expressed as a homogeneous phase. (c−e) The microstructure generation procedure outlined here grows the secondary phase with different morphologies varying between a film-type structure (ω = 0) and a fingerlike arrangement (ω = 1). Also, going toward higher morphologies (i.e., ω→ 1) gives rise to a secondary pore network with a smaller pore size in thicker carbon binder domains.« less

Save / Share:

Works referenced in this record:

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Electrochemistry and the Future of the Automobile
journal, June 2010

  • Wagner, Frederick T.; Lakshmanan, Balasubramanian; Mathias, Mark F.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 14
  • DOI: 10.1021/jz100553m

Materials Challenges and Opportunities of Lithium Ion Batteries
journal, January 2011

  • Manthiram, Arumugam
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 3
  • DOI: 10.1021/jz1015422

Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


New Horizons for Conventional Lithium Ion Battery Technology
journal, September 2014

  • Erickson, Evan M.; Ghanty, Chandan; Aurbach, Doron
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 19
  • DOI: 10.1021/jz501387m

Prospects and Limits of Energy Storage in Batteries
journal, February 2015

  • Abraham, K. M.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 5
  • DOI: 10.1021/jz5026273

Ageing mechanisms in lithium-ion batteries
journal, September 2005


Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Chemistry, Impedance, and Morphology Evolution in Solid Electrolyte Interphase Films during Formation in Lithium Ion Batteries
journal, December 2013

  • Lu, Peng; Li, Chen; Schneider, Eric W.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 2
  • DOI: 10.1021/jp4111019

Effects of Inhomogeneities—Nanoscale to Mesoscale—on the Durability of Li-Ion Batteries
journal, February 2013

  • Harris, Stephen J.; Lu, Peng
  • The Journal of Physical Chemistry C, Vol. 117, Issue 13
  • DOI: 10.1021/jp311431z

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

A General Discussion of Li Ion Battery Safety
journal, January 2012

  • Doughty, D. H.; Roth, E. P.
  • Interface magazine, Vol. 21, Issue 2
  • DOI: 10.1149/2.F03122if

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Positive Electrode Materials for Li-Ion and Li-Batteries
journal, February 2010

  • Ellis, Brian L.; Lee, Kyu Tae; Nazar, Linda F.
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm902696j

Alloy Negative Electrodes for Li-Ion Batteries
journal, October 2014

  • Obrovac, M. N.; Chevrier, V. L.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500207g

Effects of Various Conductive Additive and Polymeric Binder Contents on the Performance of a Lithium-Ion Composite Cathode
journal, January 2008

  • Liu, G.; Zheng, H.; Kim, S.
  • Journal of The Electrochemical Society, Vol. 155, Issue 12
  • DOI: 10.1149/1.2976031

A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells
journal, September 2011


A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes
journal, June 2012


Cooperation between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium Ion Battery Cathode
journal, February 2012

  • Zheng, Honghe; Yang, Ruizhi; Liu, Gao
  • The Journal of Physical Chemistry C, Vol. 116, Issue 7
  • DOI: 10.1021/jp208428w

Correlationship between electrode mechanics and long-term cycling performance for graphite anode in lithium ion cells
journal, November 2012


Particles and Polymer Binder Interaction: A Controlling Factor in Lithium-Ion Electrode Performance
journal, January 2012

  • Liu, G.; Zheng, H.; Song, X.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.024203jes

Electrochemical Properties of LiCoO 2 Electrodes with Latex Binders on High-Voltage Exposure
journal, January 2015

  • Yabuuchi, Naoaki; Kinoshita, Yuta; Misaki, Kimio
  • Journal of The Electrochemical Society, Vol. 162, Issue 4
  • DOI: 10.1149/2.0151504jes

The effect of binders on the rheological properties and the microstructure formation of lithium-ion battery anode slurries
journal, December 2015


Conveying Advanced Li-ion Battery Materials into Practice The Impact of Electrode Slurry Preparation Skills
journal, July 2016

  • Kraytsberg, Alexander; Ein-Eli, Yair
  • Advanced Energy Materials, Vol. 6, Issue 21
  • DOI: 10.1002/aenm.201600655

Mechanistic Understanding of the Role of Evaporation in Electrode Processing
journal, January 2017

  • Stein, Malcolm; Mistry, Aashutosh; Mukherjee, Partha P.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1271707jes

The Morphology of Battery Electrodes with the Focus of the Conductive Additives Paths
journal, January 2015

  • Indrikova, Maira; Grunwald, Stephan; Golks, Frederik
  • Journal of The Electrochemical Society, Vol. 162, Issue 10
  • DOI: 10.1149/2.0441510jes

Three-dimensional microstructural imaging methods for energy materials
journal, January 2013

  • Cocco, Alex P.; Nelson, George J.; Harris, William M.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 39
  • DOI: 10.1039/c3cp52356j

Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery
journal, March 2010


Measurement of three-dimensional microstructure in a LiCoO2 positive electrode
journal, April 2011


Multi Length Scale Microstructural Investigations of a Commercially Available Li-Ion Battery Electrode
journal, January 2012

  • Shearing, P. R.; Brandon, N. P.; Gelb, J.
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.053207jes

Quantitative Characterization of LiFePO 4 Cathodes Reconstructed by FIB/SEM Tomography
journal, January 2012

  • Ender, Moses; Joos, Jochen; Carraro, Thomas
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.033207jes

3D analysis of a LiCoO2–Li(Ni1/3Mn1/3Co1/3)O2 Li-ion battery positive electrode using x-ray nano-tomography
journal, March 2013


Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries
journal, October 2013


X-Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes
journal, March 2013

  • Ebner, Martin; Geldmacher, Felix; Marone, Federica
  • Advanced Energy Materials, Vol. 3, Issue 7
  • DOI: 10.1002/aenm.201200932

The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes
journal, April 2014

  • Eastwood, D. S.; Bradley, R. S.; Tariq, F.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 324
  • DOI: 10.1016/j.nimb.2013.08.066

Three-dimensional high resolution X-ray imaging and quantification of lithium ion battery mesocarbon microbead anodes
journal, February 2014


Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
journal, January 1993

  • Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 140, Issue 6
  • DOI: 10.1149/1.2221597

Optimizing Areal Capacities through Understanding the Limitations of Lithium-Ion Electrodes
journal, November 2015

  • Gallagher, Kevin G.; Trask, Stephen E.; Bauer, Christoph
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0321602jes

Thick electrodes for Li-ion batteries: A model based analysis
journal, December 2016


Tortuosity Anisotropy in Lithium-Ion Battery Electrodes
journal, October 2013

  • Ebner, Martin; Chung, Ding-Wen; García, R. Edwin
  • Advanced Energy Materials, Vol. 4, Issue 5
  • DOI: 10.1002/aenm.201301278

Tool for Tortuosity Estimation in Lithium Ion Battery Porous Electrodes
journal, December 2014

  • Ebner, Martin; Wood, Vanessa
  • Journal of The Electrochemical Society, Vol. 162, Issue 2
  • DOI: 10.1149/2.0111502jes

The Effect of Microstructure on the Galvanostatic Discharge of Graphite Anode Electrodes in LiCoO[sub 2]-Based Rocking-Chair Rechargeable Batteries
journal, January 2009

  • Smith, Madeleine; García, R. Edwin; Horn, Quinn C.
  • Journal of The Electrochemical Society, Vol. 156, Issue 11
  • DOI: 10.1149/1.3216000

Mechanical and Electrochemical Response of a LiCoO2 Cathode using Reconstructed Microstructures
journal, February 2016


Microstructural effects on the average properties in porous battery electrodes
journal, March 2016


Mesoscale Effective Property Simulations Incorporating Conductive Binder
journal, January 2017

  • Trembacki, Bradley L.; Noble, David R.; Brunini, Victor E.
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0601711jes

Three-Phase Multiscale Modeling of a LiCoO 2 Cathode: Combining the Advantages of FIB-SEM Imaging and X-Ray Tomography
journal, November 2014

  • Zielke, Lukas; Hutzenlaub, Tobias; Wheeler, Dean R.
  • Advanced Energy Materials, Vol. 5, Issue 5
  • DOI: 10.1002/aenm.201401612

A Combination of X-Ray Tomography and Carbon Binder Modeling: Reconstructing the Three Phases of LiCoO 2 Li-Ion Battery Cathodes
journal, January 2014

  • Zielke, Lukas; Hutzenlaub, Tobias; Wheeler, Dean R.
  • Advanced Energy Materials, Vol. 4, Issue 8
  • DOI: 10.1002/aenm.201301617

Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes
journal, August 2016

  • Mistry, Aashutosh; Juarez-Robles, Daniel; Stein, Malcolm
  • Journal of Electrochemical Energy Conversion and Storage, Vol. 13, Issue 3
  • DOI: 10.1115/1.4035198

Mesoscale Elucidation of the Influence of Mixing Sequence in Electrode Processing
journal, December 2014

  • Liu, Zhixiao; Battaglia, Vincent; Mukherjee, Partha P.
  • Langmuir, Vol. 30, Issue 50
  • DOI: 10.1021/la5038469

Microstructure Evolution in Lithium-Ion Battery Electrode Processing
journal, January 2014

  • Liu, Zhixiao; Mukherjee, Partha P.
  • Journal of The Electrochemical Society, Vol. 161, Issue 8
  • DOI: 10.1149/2.026408jes

Transport Properties of LiPF[sub 6]-Based Li-Ion Battery Electrolytes
journal, January 2005

  • Valo̸en, Lars Ole; Reimers, Jan N.
  • Journal of The Electrochemical Society, Vol. 152, Issue 5
  • DOI: 10.1149/1.1872737

Works referencing / citing this record:

Volume-Averaged Electrochemical Performance Modeling of 3D Interpenetrating Battery Electrode Architectures
journal, September 2019

  • Trembacki, Bradley L.; Vadakkepatt, Ajay; Roberts, Scott A.
  • Journal of The Electrochemical Society, Vol. 167, Issue 1
  • DOI: 10.1149/2.0072001jes

Numerical Prediction of Multiscale Electronic Conductivity of Lithium-Ion Battery Positive Electrodes
journal, January 2019

  • Cadiou, F.; Etiemble, A.; Douillard, T.
  • Journal of The Electrochemical Society, Vol. 166, Issue 8
  • DOI: 10.1149/2.1221908jes

Perspective—Mesoscale Physics in the Catalyst Layer of Proton Exchange Membrane Fuel Cells
journal, January 2019

  • Grunewald, Jonathan B.; Mistry, Aashutosh N.; Verma, Ankit
  • Journal of The Electrochemical Society, Vol. 166, Issue 7
  • DOI: 10.1149/2.0111907jes

Mesoscale Electrochemical Performance Simulation of 3D Interpenetrating Lithium-Ion Battery Electrodes
journal, January 2019

  • Trembacki, Bradley; Duoss, Eric; Oxberry, Geoffrey
  • Journal of The Electrochemical Society, Vol. 166, Issue 6
  • DOI: 10.1149/2.0031906jes

Modeling and Simulation of Pore Morphology Modifications using Laser-Structured Graphite Anodes in Lithium-Ion Batteries
journal, September 2019

  • Kraft, Ludwig; Habedank, Jan B.; Frank, Alexander
  • Journal of The Electrochemical Society, Vol. 167, Issue 1
  • DOI: 10.1149/2.0062001jes

Probing spatial coupling of resistive modes in porous intercalation electrodes through impedance spectroscopy
journal, January 2019

  • Mistry, Aashutosh N.; Mukherjee, Partha P.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 7
  • DOI: 10.1039/c8cp05109g

Non-equilibrium thermodynamics in electrochemical complexation of Li–oxygen porous electrodes
journal, January 2019

  • Mistry, Aashutosh N.; Cano-Banda, Fernando; Law, Dickens
  • Journal of Materials Chemistry A, Vol. 7, Issue 15
  • DOI: 10.1039/c9ta01339c

A Multi-Physics Battery Model with Particle Scale Resolution of Porosity Evolution Driven by Intercalation Strain and Electrolyte Flow
journal, January 2018

  • Wang, Z.; Garikipati, K.
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0141811jes

Deconstructing electrode pore network to learn transport distortion
journal, December 2019

  • Mistry, Aashutosh; Mukherjee, Partha P.
  • Physics of Fluids, Vol. 31, Issue 12
  • DOI: 10.1063/1.5124099

Progress in 3D electrode microstructure modelling for fuel cells and batteries: transport and electrochemical performance
journal, July 2019


Editors' Choice—Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes
journal, January 2018

  • Trembacki, Bradley L.; Mistry, Aashutosh N.; Noble, David R.
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0981813jes

Quantifying the unknown impact of segmentation uncertainty on image-based simulations
text, January 2020


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.