skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on January 2, 2019

Title: Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization

To push perovskite solar cell (PSC) technology toward practical applications, large-area perovskite solar modules with multiple subcells need to be developed by fully scalable deposition approaches. Here, we demonstrate a deposition scheme for perovskite module fabrication with spray coating of a TiO2 electron transport layer (ETL) and blade coating of both a perovskite absorber layer and a spiro-OMeTAD-based hole transport layer (HTL). The TiO2 ETL remaining in the interconnection between subcells significantly affects the module performance. Reducing the TiO2 thickness changes the interconnection contact from a Schottky diode to ohmic behavior. Owing to interconnection resistance reduction, the perovskite modules with a 10 nm TiO2 layer show enhanced performance mainly associated with an improved fill factor. Finally, we demonstrate a four-cell MA0.7FA0.3PbI3 perovskite module with a stabilized power conversion efficiency (PCE) of 15.6% measured from an aperture area of ~10.36 cm2, corresponding to an active-area module PCE of 17.9% with a geometric fill factor of ~87.3%.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ; ORCiD logo [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Report Number(s):
NREL/JA-5900-70289
Journal ID: ISSN 2380-8195
Grant/Contract Number:
AC36-08GO28308
Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 3; Journal Issue: 2; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; perovskite solar cells; module fabrication; deposition; fabrication
OSTI Identifier:
1419411