skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on January 2, 2019

Title: Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization

To push perovskite solar cell (PSC) technology toward practical applications, large-area perovskite solar modules with multiple subcells need to be developed by fully scalable deposition approaches. Here, we demonstrate a deposition scheme for perovskite module fabrication with spray coating of a TiO2 electron transport layer (ETL) and blade coating of both a perovskite absorber layer and a spiro-OMeTAD-based hole transport layer (HTL). The TiO2 ETL remaining in the interconnection between subcells significantly affects the module performance. Reducing the TiO2 thickness changes the interconnection contact from a Schottky diode to ohmic behavior. Owing to interconnection resistance reduction, the perovskite modules with a 10 nm TiO2 layer show enhanced performance mainly associated with an improved fill factor. Finally, we demonstrate a four-cell MA0.7FA0.3PbI3 perovskite module with a stabilized power conversion efficiency (PCE) of 15.6% measured from an aperture area of ~10.36 cm2, corresponding to an active-area module PCE of 17.9% with a geometric fill factor of ~87.3%.
Authors:
 [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ;  [1] ; ORCiD logo [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Report Number(s):
NREL/JA-5900-70289
Journal ID: ISSN 2380-8195
Grant/Contract Number:
AC36-08GO28308
Type:
Accepted Manuscript
Journal Name:
ACS Energy Letters
Additional Journal Information:
Journal Volume: 3; Journal Issue: 2; Journal ID: ISSN 2380-8195
Publisher:
American Chemical Society (ACS)
Research Org:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; perovskite solar cells; module fabrication; deposition; fabrication
OSTI Identifier:
1419411

Yang, Mengjin, Kim, Dong Hoe, Klein, Talysa R., Li, Zhen, Reese, Matthew O., Tremolet de Villers, Bertrand J., Berry, Joseph J., van Hest, Maikel F. A. M., and Zhu, Kai. Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization. United States: N. p., Web. doi:10.1021/acsenergylett.7b01221.
Yang, Mengjin, Kim, Dong Hoe, Klein, Talysa R., Li, Zhen, Reese, Matthew O., Tremolet de Villers, Bertrand J., Berry, Joseph J., van Hest, Maikel F. A. M., & Zhu, Kai. Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization. United States. doi:10.1021/acsenergylett.7b01221.
Yang, Mengjin, Kim, Dong Hoe, Klein, Talysa R., Li, Zhen, Reese, Matthew O., Tremolet de Villers, Bertrand J., Berry, Joseph J., van Hest, Maikel F. A. M., and Zhu, Kai. 2018. "Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization". United States. doi:10.1021/acsenergylett.7b01221.
@article{osti_1419411,
title = {Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization},
author = {Yang, Mengjin and Kim, Dong Hoe and Klein, Talysa R. and Li, Zhen and Reese, Matthew O. and Tremolet de Villers, Bertrand J. and Berry, Joseph J. and van Hest, Maikel F. A. M. and Zhu, Kai},
abstractNote = {To push perovskite solar cell (PSC) technology toward practical applications, large-area perovskite solar modules with multiple subcells need to be developed by fully scalable deposition approaches. Here, we demonstrate a deposition scheme for perovskite module fabrication with spray coating of a TiO2 electron transport layer (ETL) and blade coating of both a perovskite absorber layer and a spiro-OMeTAD-based hole transport layer (HTL). The TiO2 ETL remaining in the interconnection between subcells significantly affects the module performance. Reducing the TiO2 thickness changes the interconnection contact from a Schottky diode to ohmic behavior. Owing to interconnection resistance reduction, the perovskite modules with a 10 nm TiO2 layer show enhanced performance mainly associated with an improved fill factor. Finally, we demonstrate a four-cell MA0.7FA0.3PbI3 perovskite module with a stabilized power conversion efficiency (PCE) of 15.6% measured from an aperture area of ~10.36 cm2, corresponding to an active-area module PCE of 17.9% with a geometric fill factor of ~87.3%.},
doi = {10.1021/acsenergylett.7b01221},
journal = {ACS Energy Letters},
number = 2,
volume = 3,
place = {United States},
year = {2018},
month = {1}
}