skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability

Abstract

Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughout the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. Colorado School of Mines, Golden, CO (United States)
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States); Colorado School of Mines, Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
OSTI Identifier:
1419410
Report Number(s):
NREL/JA-5900-68531
Journal ID: ISSN 2058-7546
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 3; Journal Issue: 1; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; perovskite solar cells; efficiency; stability

Citation Formats

Christians, Jeffrey A., Schulz, Philip, Tinkham, Jonathan S., Schloemer, Tracy H., Harvey, Steven P., Tremolet de Villers, Bertrand J., Sellinger, Alan, Berry, Joseph J., and Luther, Joseph M. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. United States: N. p., 2017. Web. doi:10.1038/s41560-017-0067-y.
Christians, Jeffrey A., Schulz, Philip, Tinkham, Jonathan S., Schloemer, Tracy H., Harvey, Steven P., Tremolet de Villers, Bertrand J., Sellinger, Alan, Berry, Joseph J., & Luther, Joseph M. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. United States. doi:10.1038/s41560-017-0067-y.
Christians, Jeffrey A., Schulz, Philip, Tinkham, Jonathan S., Schloemer, Tracy H., Harvey, Steven P., Tremolet de Villers, Bertrand J., Sellinger, Alan, Berry, Joseph J., and Luther, Joseph M. Tue . "Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability". United States. doi:10.1038/s41560-017-0067-y. https://www.osti.gov/servlets/purl/1419410.
@article{osti_1419410,
title = {Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability},
author = {Christians, Jeffrey A. and Schulz, Philip and Tinkham, Jonathan S. and Schloemer, Tracy H. and Harvey, Steven P. and Tremolet de Villers, Bertrand J. and Sellinger, Alan and Berry, Joseph J. and Luther, Joseph M.},
abstractNote = {Long-term device stability is the most pressing issue that impedes perovskite solar cell commercialization, given the achieved 22.7% efficiency. The perovskite absorber material itself has been heavily scrutinized for being prone to degradation by water, oxygen and ultraviolet light. To date, most reports characterize device stability in the absence of these extrinsic factors. Here we show that, even under the combined stresses of light (including ultraviolet light), oxygen and moisture, perovskite solar cells can retain 94% of peak efficiency despite 1,000 hours of continuous unencapsulated operation in ambient air conditions (relative humidity of 10-20%). Each interface and contact layer throughout the device stack plays an important role in the overall stability which, when appropriately modified, yields devices in which both the initial rapid decay (often termed burn-in) and the gradual slower decay are suppressed. This extensively modified device architecture and the understanding developed will lead towards durable long-term device performance.},
doi = {10.1038/s41560-017-0067-y},
journal = {Nature Energy},
number = 1,
volume = 3,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 309 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Intriguing Optoelectronic Properties of Metal Halide Perovskites
journal, June 2016


Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys
journal, December 2015


High-Work-Function Molybdenum Oxide Hole Extraction Contacts in Hybrid Organic–Inorganic Perovskite Solar Cells
journal, November 2016

  • Schulz, Philip; Tiepelt, Jan O.; Christians, Jeffrey A.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 46
  • DOI: 10.1021/acsami.6b10898

Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells
journal, May 2016

  • Domanski, Konrad; Correa-Baena, Juan-Pablo; Mine, Nicolas
  • ACS Nano, Vol. 10, Issue 6
  • DOI: 10.1021/acsnano.6b02613

Efficient charge extraction and slow recombination in organic–inorganic perovskites capped with semiconducting single-walled carbon nanotubes
journal, January 2016

  • Ihly, Rachelle; Dowgiallo, Anne-Marie; Yang, Mengjin
  • Energy & Environmental Science, Vol. 9, Issue 4
  • DOI: 10.1039/C5EE03806E

Redox Chemistry Dominates the Degradation and Decomposition of Metal Halide Perovskite Optoelectronic Devices
journal, August 2016


Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells
journal, May 2009

  • Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo
  • Journal of the American Chemical Society, Vol. 131, Issue 17, p. 6050-6051
  • DOI: 10.1021/ja809598r

Gold and iodine diffusion in large area perovskite solar cells under illumination
journal, January 2017

  • Cacovich, S.; Ciná, L.; Matteocci, F.
  • Nanoscale, Vol. 9, Issue 14
  • DOI: 10.1039/C7NR00784A

Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency
journal, January 2014

  • Wojciechowski, Konrad; Saliba, Michael; Leijtens, Tomas
  • Energy Environ. Sci., Vol. 7, Issue 3
  • DOI: 10.1039/C3EE43707H

Extrinsic ion migration in perovskite solar cells
journal, January 2017

  • Li, Zhen; Xiao, Chuanxiao; Yang, Ye
  • Energy & Environmental Science, Vol. 10, Issue 5
  • DOI: 10.1039/C7EE00358G

Colloidally prepared La-doped BaSnO 3 electrodes for efficient, photostable perovskite solar cells
journal, March 2017


Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite
journal, June 2015

  • Conings, Bert; Drijkoningen, Jeroen; Gauquelin, Nicolas
  • Advanced Energy Materials, Vol. 5, Issue 15
  • DOI: 10.1002/aenm.201500477

Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells
journal, February 2016

  • Sutton, Rebecca J.; Eperon, Giles E.; Miranda, Laura
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201502458

Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide
journal, July 2015

  • Ahn, Namyoung; Son, Dae-Yong; Jang, In-Hyuk
  • Journal of the American Chemical Society, Vol. 137, Issue 27
  • DOI: 10.1021/jacs.5b04930

Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
journal, January 2016

  • Saliba, Michael; Matsui, Taisuke; Seo, Ji-Youn
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03874J

Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution
journal, January 2016

  • Nenon, David P.; Christians, Jeffrey A.; Wheeler, Lance M.
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C6EE01047D

Making and Breaking of Lead Halide Perovskites
journal, January 2016

  • Manser, Joseph S.; Saidaminov, Makhsud I.; Christians, Jeffrey A.
  • Accounts of Chemical Research, Vol. 49, Issue 2
  • DOI: 10.1021/acs.accounts.5b00455

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites
journal, October 2012


Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells
journal, February 2016

  • Leijtens, Tomas; Giovenzana, Tommaso; Habisreutinger, Severin N.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 9
  • DOI: 10.1021/acsami.5b10093

Probing Diffusion Kinetics with Secondary Ion Mass Spectrometry
journal, December 2009


Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells
journal, December 2016


Efficient and stable solution-processed planar perovskite solar cells via contact passivation
journal, February 2017


Role of interface in stability of perovskite solar cells
journal, February 2017

  • Manspeaker, Chris; Venkatesan, Swaminathan; Zakhidov, Alex
  • Current Opinion in Chemical Engineering, Vol. 15
  • DOI: 10.1016/j.coche.2016.08.013

Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
journal, September 2016


Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters
journal, October 2014

  • Dualeh, Amalie; Gao, Peng; Seok, Sang Il
  • Chemistry of Materials, Vol. 26, Issue 21
  • DOI: 10.1021/cm502468k

Investigation of CH 3 NH 3 PbI 3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques
journal, January 2015

  • Yang, Jinli; Siempelkamp, Braden D.; Liu, Dianyi
  • ACS Nano, Vol. 9, Issue 2
  • DOI: 10.1021/nn506864k

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells
journal, January 2016


Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MoO x /Al for Hole Collection
journal, April 2016


Mechanisms of Lithium Intercalation and Conversion Processes in Organic–Inorganic Halide Perovskites
journal, July 2017


Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells
journal, May 2017

  • Aristidou, Nicholas; Eames, Christopher; Sanchez-Molina, Irene
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15218

Quantum dot-induced phase stabilization of  -CsPbI3 perovskite for high-efficiency photovoltaics
journal, October 2016


Consensus stability testing protocols for organic photovoltaic materials and devices
journal, May 2011

  • Reese, Matthew O.; Gevorgyan, Suren A.; Jørgensen, Mikkel
  • Solar Energy Materials and Solar Cells, Vol. 95, Issue 5
  • DOI: 10.1016/j.solmat.2011.01.036

Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells
journal, November 2016


Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells
journal, January 2017

  • Domanski, Konrad; Roose, Bart; Matsui, Taisuke
  • Energy & Environmental Science, Vol. 10, Issue 2
  • DOI: 10.1039/C6EE03352K

Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells
journal, December 2013

  • Leijtens, Tomas; Eperon, Giles E.; Pathak, Sandeep
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3885

Perovskite-Inspired Photovoltaic Materials: Toward Best Practices in Materials Characterization and Calculations
journal, February 2017


Transformation of the Excited State and Photovoltaic Efficiency of CH 3 NH 3 PbI 3 Perovskite upon Controlled Exposure to Humidified Air
journal, January 2015

  • Christians, Jeffrey A.; Miranda Herrera, Pierre A.; Kamat, Prashant V.
  • Journal of the American Chemical Society, Vol. 137, Issue 4
  • DOI: 10.1021/ja511132a

Research Update: Strategies for improving the stability of perovskite solar cells
journal, September 2016

  • Habisreutinger, Severin N.; McMeekin, David P.; Snaith, Henry J.
  • APL Materials, Vol. 4, Issue 9
  • DOI: 10.1063/1.4961210

Defect Tolerance in Methylammonium Lead Triiodide Perovskite
journal, July 2016


Enhancing the Hole-Conductivity of Spiro-OMeTAD without Oxygen or Lithium Salts by Using Spiro(TFSI) 2 in Perovskite and Dye-Sensitized Solar Cells
journal, July 2014

  • Nguyen, William H.; Bailie, Colin D.; Unger, Eva L.
  • Journal of the American Chemical Society, Vol. 136, Issue 31
  • DOI: 10.1021/ja504539w

Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells
journal, September 2014

  • Habisreutinger, Severin N.; Leijtens, Tomas; Eperon, Giles E.
  • Nano Letters, Vol. 14, Issue 10, p. 5561-5568
  • DOI: 10.1021/nl501982b

    Works referencing / citing this record:

    Overcoming Zinc Oxide Interface Instability with a Methylammonium‐Free Perovskite for High‐Performance Solar Cells
    journal, June 2019

    • Schutt, Kelly; Nayak, Pabitra K.; Ramadan, Alexandra J.
    • Advanced Functional Materials, Vol. 29, Issue 47
    • DOI: 10.1002/adfm.201900466

    Inorganic CsPbI 3 Perovskites toward High‐Efficiency Photovoltaics
    journal, June 2019

    • Shi, Jielin; Wang, Yong; Zhao, Yixin
    • ENERGY & ENVIRONMENTAL MATERIALS, Vol. 2, Issue 2
    • DOI: 10.1002/eem2.12039

    Short‐Term Stability of Perovskite Solar Cells Affected by In Situ Interface Modification
    journal, May 2019


    High efficiency perovskite quantum dot solar cells with charge separating heterostructure
    journal, June 2019


    Revealing the nature of photoluminescence emission in the metal-halide double perovskite Cs 2 AgBiBr 6
    journal, January 2019

    • Zelewski, S. J.; Urban, J. M.; Surrente, A.
    • Journal of Materials Chemistry C, Vol. 7, Issue 27
    • DOI: 10.1039/c9tc02402f

    Benefit from Photon Recycling at the Maximum-Power Point of State-of-the-Art Perovskite Solar Cells
    journal, July 2019


    Overcoming Zinc Oxide Interface Instability with a Methylammonium‐Free Perovskite for High‐Performance Solar Cells
    journal, June 2019

    • Schutt, Kelly; Nayak, Pabitra K.; Ramadan, Alexandra J.
    • Advanced Functional Materials, Vol. 29, Issue 47
    • DOI: 10.1002/adfm.201900466

    Inorganic CsPbI 3 Perovskites toward High‐Efficiency Photovoltaics
    journal, June 2019

    • Shi, Jielin; Wang, Yong; Zhao, Yixin
    • ENERGY & ENVIRONMENTAL MATERIALS, Vol. 2, Issue 2
    • DOI: 10.1002/eem2.12039

    Short‐Term Stability of Perovskite Solar Cells Affected by In Situ Interface Modification
    journal, May 2019


    High efficiency perovskite quantum dot solar cells with charge separating heterostructure
    journal, June 2019


    Revealing the nature of photoluminescence emission in the metal-halide double perovskite Cs 2 AgBiBr 6
    journal, January 2019

    • Zelewski, S. J.; Urban, J. M.; Surrente, A.
    • Journal of Materials Chemistry C, Vol. 7, Issue 27
    • DOI: 10.1039/c9tc02402f

    Benefit from Photon Recycling at the Maximum-Power Point of State-of-the-Art Perovskite Solar Cells
    journal, July 2019


    A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells
    journal, January 2018

    • Li, Yang; Ji, Li; Liu, Rugeng
    • Journal of Materials Chemistry A, Vol. 6, Issue 27
    • DOI: 10.1039/c8ta04120b