DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mn versus Al in Layered Oxide Cathodes in Lithium-Ion Batteries: A Comprehensive Evaluation on Long-Term Cyclability

Abstract

AbstractNickel‐rich layered oxide cathodes with the composition LiNi1−x−yCoxMnyO2 (NCM, (1−x−y) ≥ 0.6) are under intense scrutiny recently to contend with commercial LiNi0.8Co0.15Al0.05O2 (NCA) for high‐energy‐density batteries for electric vehicles. However, a comprehensive assessment of their electrochemical durability is currently lacking. Herein, two in‐house cathodes, LiNi0.8Co0.15Al0.05O2 and LiNi0.7Co0.15Mn0.15O2, are investigated in a high‐voltage graphite full cell over 1500 charge‐discharge cycles (≈5–10 year service life in vehicles). Despite a lower nickel content, NCM shows more performance deterioration than NCA. Critical underlying degradation processes, including chemical, structural, and mechanical aspects, are analyzed via an arsenal of characterization techniques. Overall, Mn substitution appears far less effective than Al in suppressing active mass dissolution and irreversible phase transitions of the layered oxide cathodes. The active mass dissolution (and crossover) accelerates capacity decline with sustained parasitic reactions on the graphite anode, while the phase transitions are primarily responsible for cell resistance increase and voltage fade. With Al doping, on the other hand, secondary particle pulverization is the more limiting factor for long‐term cyclability compared to Mn. These results establish a fundamental guideline for designing high‐performing Ni‐rich NCM cathodes as a compelling alternative to NCA and other compositions for electric vehicle applications.

Authors:
 [1];  [2];  [1];  [1];  [1];  [2]; ORCiD logo [1]
  1. Univ. of Texas, Austin, TX (United States)
  2. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Univ. of Texas, Austin, TX (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1470844
Alternate Identifier(s):
OSTI ID: 1419355; OSTI ID: 2217318
Grant/Contract Number:  
AC05-00OR22725; DE‐EE0007762; EE0007762
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 8; Journal Issue: 15; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; aluminum and manganese substitution; electron microscopy; lithium-ion batteries; nickel-rich layered oxides; secondary-ion mass spectrometry; batteries; cathodes

Citation Formats

Li, Wangda, Liu, Xiaoming, Celio, Hugo, Smith, Patrick, Dolocan, Andrei, Chi, Miaofang, and Manthiram, Arumugam. Mn versus Al in Layered Oxide Cathodes in Lithium-Ion Batteries: A Comprehensive Evaluation on Long-Term Cyclability. United States: N. p., 2018. Web. doi:10.1002/aenm.201703154.
Li, Wangda, Liu, Xiaoming, Celio, Hugo, Smith, Patrick, Dolocan, Andrei, Chi, Miaofang, & Manthiram, Arumugam. Mn versus Al in Layered Oxide Cathodes in Lithium-Ion Batteries: A Comprehensive Evaluation on Long-Term Cyclability. United States. https://doi.org/10.1002/aenm.201703154
Li, Wangda, Liu, Xiaoming, Celio, Hugo, Smith, Patrick, Dolocan, Andrei, Chi, Miaofang, and Manthiram, Arumugam. Fri . "Mn versus Al in Layered Oxide Cathodes in Lithium-Ion Batteries: A Comprehensive Evaluation on Long-Term Cyclability". United States. https://doi.org/10.1002/aenm.201703154. https://www.osti.gov/servlets/purl/1470844.
@article{osti_1470844,
title = {Mn versus Al in Layered Oxide Cathodes in Lithium-Ion Batteries: A Comprehensive Evaluation on Long-Term Cyclability},
author = {Li, Wangda and Liu, Xiaoming and Celio, Hugo and Smith, Patrick and Dolocan, Andrei and Chi, Miaofang and Manthiram, Arumugam},
abstractNote = {AbstractNickel‐rich layered oxide cathodes with the composition LiNi1−x−yCoxMnyO2 (NCM, (1−x−y) ≥ 0.6) are under intense scrutiny recently to contend with commercial LiNi0.8Co0.15Al0.05O2 (NCA) for high‐energy‐density batteries for electric vehicles. However, a comprehensive assessment of their electrochemical durability is currently lacking. Herein, two in‐house cathodes, LiNi0.8Co0.15Al0.05O2 and LiNi0.7Co0.15Mn0.15O2, are investigated in a high‐voltage graphite full cell over 1500 charge‐discharge cycles (≈5–10 year service life in vehicles). Despite a lower nickel content, NCM shows more performance deterioration than NCA. Critical underlying degradation processes, including chemical, structural, and mechanical aspects, are analyzed via an arsenal of characterization techniques. Overall, Mn substitution appears far less effective than Al in suppressing active mass dissolution and irreversible phase transitions of the layered oxide cathodes. The active mass dissolution (and crossover) accelerates capacity decline with sustained parasitic reactions on the graphite anode, while the phase transitions are primarily responsible for cell resistance increase and voltage fade. With Al doping, on the other hand, secondary particle pulverization is the more limiting factor for long‐term cyclability compared to Mn. These results establish a fundamental guideline for designing high‐performing Ni‐rich NCM cathodes as a compelling alternative to NCA and other compositions for electric vehicle applications.},
doi = {10.1002/aenm.201703154},
journal = {Advanced Energy Materials},
number = 15,
volume = 8,
place = {United States},
year = {Fri Feb 02 00:00:00 EST 2018},
month = {Fri Feb 02 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 187 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Manganese in Graphite Anode and Capacity Fade in Li Ion Batteries
journal, October 2014

  • Shkrob, Ilya A.; Kropf, A. Jeremy; Marin, Timothy W.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 42
  • DOI: 10.1021/jp507833u

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

High Voltage LiNi 0.5 Mn 0.3 Co 0.2 O 2 /Graphite Cell Cycled at 4.6 V with a FEC/HFDEC-Based Electrolyte
journal, April 2017

  • He, Meinan; Su, Chi-Cheung; Feng, Zhenxing
  • Advanced Energy Materials, Vol. 7, Issue 15
  • DOI: 10.1002/aenm.201700109

Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

The truth about the 1st cycle Coulombic efficiency of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) cathodes
journal, January 2016

  • Kasnatscheew, J.; Evertz, M.; Streipert, B.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 5
  • DOI: 10.1039/C5CP07718D

Oxidation state and chemical shift investigation in transition metal oxides by EELS
journal, May 2012


Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study
journal, January 2011

  • Xu, Bo; Fell, Christopher R.; Chi, Miaofang
  • Energy & Environmental Science, Vol. 4, Issue 6
  • DOI: 10.1039/c1ee01131f

Compositionally Graded Cathode Material with Long-Term Cycling Stability for Electric Vehicles Application
journal, August 2016

  • Kim, Un-Hyuck; Lee, Eung-Ju; Yoon, Chong S.
  • Advanced Energy Materials, Vol. 6, Issue 22
  • DOI: 10.1002/aenm.201601417

A High Precision Coulometry Study of the SEI Growth in Li/Graphite Cells
journal, January 2011

  • Smith, A. J.; Burns, J. C.; Zhao, Xuemei
  • Journal of The Electrochemical Society, Vol. 158, Issue 5
  • DOI: 10.1149/1.3557892

Electrochemistry and Structural Chemistry of LiNiO[sub 2] (R3m) for 4 Volt Secondary Lithium Cells
journal, January 1993

  • Ohzuku, Tsutomu
  • Journal of The Electrochemical Society, Vol. 140, Issue 7
  • DOI: 10.1149/1.2220730

The Impact of Electrolyte Additives and Upper Cut-off Voltage on the Formation of a Rocksalt Surface Layer in LiNi 0.8 Mn 0.1 Co 0.1 O 2 Electrodes
journal, January 2017

  • Li, Jing; Liu, Hanshuo; Xia, Jian
  • Journal of The Electrochemical Society, Vol. 164, Issue 4
  • DOI: 10.1149/2.0651704jes

Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy
journal, January 2013

  • Nie, Mengyun; Chalasani, Dinesh; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 3, p. 1257-1267
  • DOI: 10.1021/jp3118055

High-voltage positive electrode materials for lithium-ion batteries
journal, January 2017

  • Li, Wangda; Song, Bohang; Manthiram, Arumugam
  • Chemical Society Reviews, Vol. 46, Issue 10
  • DOI: 10.1039/C6CS00875E

Why do batteries fail?
journal, February 2016


Compositionally Graded Cathode Material with Long-Term Cycling Stability for Electric Vehicles Application
journal, March 2017

  • Kim, Un-Hyuck; Lee, Eung-Ju; Yoon, Chong S.
  • Advanced Energy Materials, Vol. 7, Issue 5
  • DOI: 10.1002/aenm.201700254

Cycling Behavior of NCM523/Graphite Lithium-Ion Cells in the 3–4.4 V Range: Diagnostic Studies of Full Cells and Harvested Electrodes
journal, September 2016

  • Gilbert, James A.; Bareño, Javier; Spila, Timothy
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0081701jes

Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries
journal, March 2015

  • Liu, Wen; Oh, Pilgun; Liu, Xien
  • Angewandte Chemie International Edition, Vol. 54, Issue 15
  • DOI: 10.1002/anie.201409262

Observation of Microstructural Evolution in Li Battery Cathode Oxide Particles by In Situ Electron Microscopy
journal, May 2013

  • Miller, Dean J.; Proff, Christian; Wen, J. G.
  • Advanced Energy Materials, Vol. 3, Issue 8
  • DOI: 10.1002/aenm.201300015

Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries
journal, February 2017

  • Kondrakov, Aleksandr O.; Schmidt, Alexander; Xu, Jin
  • The Journal of Physical Chemistry C, Vol. 121, Issue 6
  • DOI: 10.1021/acs.jpcc.6b12885

The cathode–electrolyte interface in the Li-ion battery
journal, November 2004


A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Ageing mechanisms in lithium-ion batteries
journal, September 2005


The Impact of Electrolyte Composition on Parasitic Reactions in Lithium Ion Cells Charged to 4.7 V Determined Using Isothermal Microcalorimetry
journal, November 2015

  • Downie, L. E.; Hyatt, S. R.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0081602jes

Transition Metal Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity Loss in Lithium-Ion Full Cells
journal, December 2016

  • Gilbert, James A.; Shkrob, Ilya A.; Abraham, Daniel P.
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.1111702jes

The Development and Future of Lithium Ion Batteries
journal, December 2016

  • Blomgren, George E.
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0251701jes

Aging Analysis of Graphite/LiNi 1/3 Mn 1/3 Co 1/3 O 2 Cells Using XRD, PGAA, and AC Impedance
journal, January 2015

  • Buchberger, Irmgard; Seidlmayer, Stefan; Pokharel, Aneil
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0721514jes

Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover
journal, May 2017


An Outlook on Lithium Ion Battery Technology
journal, September 2017


Electron Spectroscopy Study of Li[Ni,Co,Mn]O 2 /Electrolyte Interface: Electronic Structure, Interface Composition, and Device Implications
journal, April 2015

  • Cherkashinin, Gennady; Motzko, Markus; Schulz, Natalia
  • Chemistry of Materials, Vol. 27, Issue 8
  • DOI: 10.1021/cm5047534

Long-Life Nickel-Rich Layered Oxide Cathodes with a Uniform Li 2 ZrO 3 Surface Coating for Lithium-Ion Batteries
journal, March 2017

  • Song, Bohang; Li, Wangda; Oh, Seung-Min
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 11
  • DOI: 10.1021/acsami.7b00070

Understanding the Degradation Mechanisms of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Material in Lithium Ion Batteries
journal, August 2013

  • Jung, Sung-Kyun; Gwon, Hyeokjo; Hong, Jihyun
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300787

Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries
journal, January 2017

  • Yan, Pengfei; Zheng, Jianming; Gu, Meng
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14101

Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes
journal, May 2017


Atomic Layer Deposition of Stable LiAlF 4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling
journal, July 2017


The Formation Mechanism of Fluorescent Metal Complexes at the Li x Ni 0.5 Mn 1.5 O 4−δ /Carbonate Ester Electrolyte Interface
journal, March 2015

  • Jarry, Angélique; Gottis, Sébastien; Yu, Young-Sang
  • Journal of the American Chemical Society, Vol. 137, Issue 10
  • DOI: 10.1021/ja5116698

Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives
journal, December 2016


Promise and reality of post-lithium-ion batteries with high energy densities
journal, March 2016


Understanding Transition-Metal Dissolution Behavior in LiNi 0.5 Mn 1.5 O 4 High-Voltage Spinel for Lithium Ion Batteries
journal, July 2013

  • Pieczonka, Nicholas P. W.; Liu, Zhongyi; Lu, Peng
  • The Journal of Physical Chemistry C, Vol. 117, Issue 31
  • DOI: 10.1021/jp405158m

Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries
journal, April 2017

  • Li, Wangda; Dolocan, Andrei; Oh, Pilgun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14589

Study of the Failure Mechanisms of LiNi 0.8 Mn 0.1 Co 0.1 O 2 Cathode Material for Lithium Ion Batteries
journal, January 2015

  • Li, Jing; Downie, Laura E.; Ma, Lin
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.1011507jes

The cycling properties of the LixNi1−yCoyO2 electrode
journal, April 1993


Role of Manganese Deposition on Graphite in the Capacity Fading of Lithium Ion Batteries
journal, May 2016

  • Vissers, Daniel R.; Chen, Zonghai; Shao, Yuyan
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 22
  • DOI: 10.1021/acsami.6b02061

Graphites for Lithium-Ion Cells: The Correlation of the First-Cycle Charge Loss with the Brunauer-Emmett-Teller Surface Area
journal, January 1998

  • Winter, Martin
  • Journal of The Electrochemical Society, Vol. 145, Issue 2
  • DOI: 10.1149/1.1838281

Works referencing / citing this record:

Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability
journal, August 2019


In‐Depth TEM Investigation on Structural Inhomogeneity within a Primary Li x Ni 0.835 Co 0.15 Al 0.015 O 2 Particle: Origin of Capacity Decay during High‐Rate Discharge
journal, February 2020

  • Lee, Hyesu; Jo, Eunmi; Chung, Kyung Yoon
  • Angewandte Chemie International Edition, Vol. 59, Issue 6
  • DOI: 10.1002/anie.201910670

A Low‐Cost Durable Na‐FeCl 2 Battery with Ultrahigh Rate Capability
journal, March 2020

  • Zhan, Xiaowen; Bowden, Mark E.; Lu, Xiaochuan
  • Advanced Energy Materials, Vol. 10, Issue 10
  • DOI: 10.1002/aenm.201903472

Advanced cathode materials and efficient electrolytes for rechargeable batteries: practical challenges and future perspectives
journal, January 2019

  • Khan, Safyan Akram; Ali, Shahid; Saeed, Khalid
  • Journal of Materials Chemistry A, Vol. 7, Issue 17
  • DOI: 10.1039/c9ta00581a

Kinetic Stability of Bulk LiNiO 2 and Surface Degradation by Oxygen Evolution in LiNiO 2 -Based Cathode Materials
journal, November 2018

  • Kong, Fantai; Liang, Chaoping; Wang, Luhua
  • Advanced Energy Materials, Vol. 9, Issue 2
  • DOI: 10.1002/aenm.201802586

Scavenging Materials to Stabilize LiPF 6 ‐Containing Carbonate‐Based Electrolytes for Li‐Ion Batteries
journal, November 2018


MoS 2 nanosheets with expanded interlayer spacing for enhanced sodium storage
journal, January 2018

  • Dong, Huishuang; Xu, Yang; Zhang, Chenglin
  • Inorganic Chemistry Frontiers, Vol. 5, Issue 12
  • DOI: 10.1039/c8qi00969d

LiFePO 4 -Coated LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Materials with Improved High Voltage Electrochemical Performance and Enhanced Safety for Lithium Ion Pouch Cells
journal, January 2019

  • Zhu, Lei; Yan, Ting-Fang; Jia, Di
  • Journal of The Electrochemical Society, Vol. 166, Issue 3
  • DOI: 10.1149/2.0651903jes

Self-standing Li 1.2 Mn 0.6 Ni 0.2 O 2 /graphene membrane as a binder-free cathode for Li-ion batteries
journal, January 2018

  • Puheng, Yang; Wenxu, Wang; Xiaoliang, Zhang
  • RSC Advances, Vol. 8, Issue 69
  • DOI: 10.1039/c8ra06086j

An environment-friendly approach to produce nanostructured germanium anodes for lithium-ion batteries
journal, January 2020

  • Saverina, Evgeniya A.; Sivasankaran, Visweshwar; Kapaev, Roman R.
  • Green Chemistry, Vol. 22, Issue 2
  • DOI: 10.1039/c9gc02348h

Ethylene Carbonate‐Free Electrolytes for High‐Nickel Layered Oxide Cathodes in Lithium‐Ion Batteries
journal, June 2019

  • Li, Wangda; Dolocan, Andrei; Li, Jianyu
  • Advanced Energy Materials, Vol. 9, Issue 29
  • DOI: 10.1002/aenm.201901152

Surface/Interface Structure Degradation of Ni‐Rich Layered Oxide Cathodes toward Lithium‐Ion Batteries: Fundamental Mechanisms and Remedying Strategies
journal, December 2019

  • Liang, Longwei; Zhang, Wenheng; Zhao, Fei
  • Advanced Materials Interfaces, Vol. 7, Issue 3
  • DOI: 10.1002/admi.201901749

Extending the Service Life of High-Ni Layered Oxides by Tuning the Electrode-Electrolyte Interphase
journal, September 2018


Editors' Choice—Capacity Fading Mechanisms of NCM-811 Cathodes in Lithium-Ion Batteries Studied by X-ray Diffraction and Other Diagnostics
journal, January 2019

  • Friedrich, Franziska; Strehle, Benjamin; Freiberg, Anna T. S.
  • Journal of The Electrochemical Society, Vol. 166, Issue 15
  • DOI: 10.1149/2.0821915jes

Oxygen Release Degradation in Li‐Ion Battery Cathode Materials: Mechanisms and Mitigating Approaches
journal, April 2019

  • Sharifi‐Asl, Soroosh; Lu, Jun; Amine, Khalil
  • Advanced Energy Materials, Vol. 9, Issue 22
  • DOI: 10.1002/aenm.201900551

High-nickel layered oxide cathodes for lithium-based automotive batteries
journal, January 2020


Investigation of Interfacial Changes on Grain Boundaries of Li(Ni 0.5 Co 0.2 Mn 0.3 )O 2 in the Initial Overcharge Process
journal, February 2019