DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films

Abstract

The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied here. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic $${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$$ thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation, indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.

Authors:
 [1];  [2];  [2];  [1]
  1. Colorado State Univ., Fort Collins, CO (United States). Dept. of Physics
  2. Univ. of Colorado, Boulder, CO (United States). Dept. of Applied Mathematics
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES); Colorado State Univ., Fort Collins, CO (United States); Univ. of Colorado, Boulder, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); US Army Research Office (ARO); Defense Advanced Research Projects Agency (DARPA) (United States)
OSTI Identifier:
1418622
Alternate Identifier(s):
OSTI ID: 1371504
Grant/Contract Number:  
SC0012670; DMR-1407962; EFMA-1641989; DMS-1255422; W911NF-14-1-0501
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 119; Journal Issue: 2; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 97 MATHEMATICS AND COMPUTING; shock waves; spin waves; magnetic systems; nonlinear waves; nonlinear dynamics

Citation Formats

Janantha, P. A. Praveen, Sprenger, Patrick, Hoefer, Mark A., and Wu, Mingzhong. Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films. United States: N. p., 2017. Web. doi:10.1103/PhysRevLett.119.024101.
Janantha, P. A. Praveen, Sprenger, Patrick, Hoefer, Mark A., & Wu, Mingzhong. Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films. United States. https://doi.org/10.1103/PhysRevLett.119.024101
Janantha, P. A. Praveen, Sprenger, Patrick, Hoefer, Mark A., and Wu, Mingzhong. Fri . "Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films". United States. https://doi.org/10.1103/PhysRevLett.119.024101. https://www.osti.gov/servlets/purl/1418622.
@article{osti_1418622,
title = {Observation of Self-Cavitating Envelope Dispersive Shock Waves in Yttrium Iron Garnet Thin Films},
author = {Janantha, P. A. Praveen and Sprenger, Patrick and Hoefer, Mark A. and Wu, Mingzhong},
abstractNote = {The formation and properties of envelope dispersive shock wave (DSW) excitations from repulsive nonlinear waves in a magnetic film are studied here. Experiments involve the excitation of a spin wave step pulse in a low-loss magnetic ${\mathrm{Y}}_{3}{\mathrm{Fe}}_{5}{\mathrm{O}}_{12}$ thin film strip, in which the spin wave amplitude increases rapidly, realizing the canonical Riemann problem of shock theory. Under certain conditions, the envelope of the spin wave pulse evolves into a DSW that consists of an expanding train of nonlinear oscillations with amplitudes increasing from front to back, terminated by a black soliton. The onset of DSW self-cavitation, indicated by a point of zero power and a concomitant 180° phase jump, is observed for sufficiently large steps, indicative of the bidirectional dispersive hydrodynamic nature of the DSW. The experimental observations are interpreted with theory and simulations of the nonlinear Schrödinger equation.},
doi = {10.1103/PhysRevLett.119.024101},
journal = {Physical Review Letters},
number = 2,
volume = 119,
place = {United States},
year = {Fri Jul 14 00:00:00 EDT 2017},
month = {Fri Jul 14 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Observation of the Formation of an Optical Intensity Shock and Wave Breaking in the Nonlinear Propagation of Pulses in Optical Fibers
journal, January 1989


Numerical Modeling of the Internal Dispersive Shock Wave in the Ocean
journal, January 2015

  • Talipova, Tatiana; Pelinovsky, Efim; Kurkina, Oxana
  • Shock and Vibration, Vol. 2015
  • DOI: 10.1155/2015/875619

Formation of bright solitons from wave packets with repulsive nonlinearity
journal, May 2014


Observation of Optical Undular Bores in Multiple Four-Wave Mixing
journal, May 2014


Spin wave propagation in spatially nonuniform magnetic fields
journal, August 2008

  • Smith, Kevin R.; Kabatek, Michael J.; Krivosik, Pavol
  • Journal of Applied Physics, Vol. 104, Issue 4
  • DOI: 10.1063/1.2963688

Dispersive shock waves and modulation theory
journal, October 2016


Experimental Observations of Soliton Wave Trains in Electron Beams
journal, February 2013


Epitaxial growth of narrow linewidth yttrium iron garnet films
journal, January 1968


Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics
journal, August 2006


Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions
journal, December 1986


Dispersive superfluid-like shock waves in nonlinear optics
journal, December 2006

  • Wan, Wenjie; Jia, Shu; Fleischer, Jason W.
  • Nature Physics, Vol. 3, Issue 1
  • DOI: 10.1038/nphys486

Nonlinear damping of high-power magnetostatic waves in yttrium–iron–garnet films
journal, June 2004

  • Scott, Mark M.; Patton, Carl E.; Kostylev, Mikhail P.
  • Journal of Applied Physics, Vol. 95, Issue 11
  • DOI: 10.1063/1.1699503

Backward-volume-wave microwave-envelope solitons in yttrium iron garnet films
journal, May 1994


Observation of a Gradient Catastrophe Generating Solitons
journal, February 2009


Intermittency in Integrable Turbulence
journal, September 2014


Soliton Turbulence in Shallow Water Ocean Surface Waves
journal, September 2014


Experimental Observation and Theoretical Description of Multisoliton Fission in Shallow Water
journal, September 2016


Observation of spin-wave dark soliton pairs in yttrium iron garnet thin films
journal, May 2015


Formation, propagation, reflection, and collision of microwave envelope solitons in yttrium iron garnet films
journal, December 1996


Complex solitary wave dynamics, pattern formation and chaos in the gain–loss nonlinear Schrödinger equation
journal, February 2014


Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits
journal, April 2016


Decay of an initial discontinuity in the defocusing NLS hydrodynamics
journal, October 1995


The laminar–turbulent transition in a fibre laser
journal, September 2013


Formation of Dispersive Shock Waves by Merging and Splitting Bose-Einstein Condensates
journal, October 2008


<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2005-01-01">January 2005</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> DiFranco, Jeffery; McLaughlin, Kenneth</span> </li> <li> International Mathematics Research Papers, Vol. 2005, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1155/IMRP.2005.403" class="text-muted" target="_blank" rel="noopener noreferrer">10.1155/IMRP.2005.403<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevB.38.11444" target="_blank" rel="noopener noreferrer" class="name">Three- and four-magnon decay of nonlinear surface magnetostatic waves in thin ferromagnetic films<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1988-12-01">December 1988</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Boardman, A. D.; Nikitov, S. A.</span> </li> <li> Physical Review B, Vol. 38, Issue 16</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevB.38.11444" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevB.38.11444<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1126/science.1062527" target="_blank" rel="noopener noreferrer" class="name">Observation of Quantum Shock Waves Created with Ultra- Compressed Slow Light Pulses in a Bose-Einstein Condensate<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2001-07-27">July 2001</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Dutton, Z.</span> </li> <li> Science, Vol. 293, Issue 5530</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1126/science.1062527" class="text-muted" target="_blank" rel="noopener noreferrer">10.1126/science.1062527<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevB.70.054402" target="_blank" rel="noopener noreferrer" class="name">Spatial evolution of multipeaked microwave magnetic envelope solitons in yttrium iron garnet thin films<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2004-08-01">August 2004</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Wu, Mingzhong; Kraemer, Michael A.; Scott, Mark M.</span> </li> <li> Physical Review B, Vol. 70, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevB.70.054402" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevB.70.054402<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (29)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_references" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-citations" class="tab-content tab-content-sec osti-curated" data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Works referencing / citing this record:</p> <div class="list"> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/physreve.97.032218" target="_blank" rel="noopener noreferrer" class="name">Hydrodynamic optical soliton tunneling<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2018-03-01">March 2018</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Sprenger, P.; Hoefer, M. A.; El, G. A.</span> </li> <li> Physical Review E, Vol. 97, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/physreve.97.032218" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/physreve.97.032218<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/physrevlett.120.144101" target="_blank" rel="noopener noreferrer" class="name">Solitonic Dispersive Hydrodynamics: Theory and Observation<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2018-04-01">April 2018</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Maiden, Michelle D.; Anderson, Dalton V.; Franco, Nevil A.</span> </li> <li> Physical Review Letters, Vol. 120, Issue 14</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/physrevlett.120.144101" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/physrevlett.120.144101<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1111/sapm.12246" target="_blank" rel="noopener noreferrer" class="name">Modulation theory solution for nonlinearly resonant, fifth-order Korteweg-de Vries, nonclassical, traveling dispersive shock waves<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2018-11-15">November 2018</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Hoefer, Mark A.; Smyth, Noel F.; Sprenger, Patrick</span> </li> <li> Studies in Applied Mathematics, Vol. 142, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1111/sapm.12246" class="text-muted" target="_blank" rel="noopener noreferrer">10.1111/sapm.12246<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All Cited By</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (3)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted citation-search"> <label for="citation-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="citation-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="citation-search-sort-name"><label for="citation-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="citation-search-sort-date"><label for="citation-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_citations" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar Records in DOE PAGES and OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1418624-foldover-nonlinear-eigenmodes-magnetic-thin-film-based-feedback-rings" itemprop="url">Foldover of nonlinear eigenmodes in magnetic thin film based feedback rings</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Janantha, P. A. Praveen</span> ; <span class="author">Kalinikos, Boris</span> ; <span class="author">Wu, Mingzhong</span> <span class="text-muted pubdata"> - Physical Review B</span> </span> </div> <div class="abstract">The foldover effect of nonlinear eigenmodes in feedback ring systems was observed here. Experiments made use of a system that consisted of a magnetic thin film strip, which supported the propagation of spin waves, and a microwave amplifier, which amplified the signal from the output of the magnetic strip and then fed it back to the input of the magnetic strip. The signal amplitude vs frequency response in this ring system showed resonant peaks which resulted from ring eigenmodes. With an increase in the resonance amplitude, those resonant peaks evolved from symmetric peaks to asymmetric ones and then folded over<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> to higher frequencies. The experimental observations were reproduced by theoretical calculations that took into account the nonlinearity-produced frequency shift of the traveling spin waves.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 8<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1103/physrevb.95.064422" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1418624" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1103/physrevb.95.064422</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1418624" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1418624" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/548817-decay-properties-microwave-magnetic-envelope-solitons-yttrium-iron-garnet-films" itemprop="url">Decay properties of microwave-magnetic-envelope solitons in yttrium iron garnet films</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Xia, H</span> ; <span class="author">Kabos, P</span> ; <span class="author">Patton, C E</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review, B: Condensed Matter</span> </span> </div> <div class="abstract">Microwave magnetic envelope (MME) wave-packet propagation in a 7.2-{mu}m-thick yttrium iron garnet film has been investigated to determine the decay properties of linear and nonlinear MME pulses. The data were obtained in the magnetostatic backward volume wave configuration with an in-plane static field of 1088 Oe and an operating frequency of 5 GHz. Output pulse profiles, peak powers, and integrated pulse energies were measured for 13 ns wide input pulses and propagation distances from 3 to 10 mm. The pulse energy decay rate {beta} is found to be 10.6{times}10{sup 6} rad/s and independent of the input power level up to<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> 400 mW, even though the nonlinear response begins at 80 mW. This {beta} value is twice the relaxation rate {eta} from ferromagnetic resonance. In the linear regime below 80 mW, the amplitude decay rate {alpha} of the dynamic microwave magnetization peak amplitude is nearly constant at a value {alpha}{sub low}{approx}7.8{times}10{sup 6} rad/s, somewhat greater than {beta}/2 and significantly less than {beta}. This {alpha}{sub low} is greater than the decay rate due to damping, {eta}={beta}/2, because of dispersion. With the onset of the nonlinear soliton response above 80 mW, {alpha} gradually increases and saturates for input powers greater than 200 mW at a value {alpha}{sub high} equal to the energy decay rate {beta}. This result indicates that the amplitude decay rate for MME solitons is very close to twice the relaxation rate. This result is predicted in the limit of a vanishingly small damping. Experimentally, it appears to be valid even when the relaxation is significant. The transition region from {alpha}{sub low} to {alpha}{sub high} has been quantitatively modeled through the nonlinear Schroedinger equation, and demonstrates an explicit change in the critical propagation length for soliton formation from 8 mm at the low power end of the transition to 3 mm at the high power end. {copyright} {ital 1997} {ital The American Physical Society}</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1103/PhysRevB.55.15018" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="548817" data-product-type="Journal Article" data-product-subtype="AC" >https://doi.org/10.1103/PhysRevB.55.15018</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/22408088-amplitude-modulation-quantum-ion-acoustic-wavepackets-electron-positron-ion-plasmas-modulational-instability-envelope-modes-extreme-waves" itemprop="url">Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme waves</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Rahman, Ata-ur-</span> ; <span class="author">Department of Physics, Islamia College Peshawar, Khyber Pakhtunkhwa</span> ; <span class="author">Kerr, Michael Mc, E-mail: mjamckerr@gmail.com</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physics of Plasmas</span> </span> </div> <div class="abstract">A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely,<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1063/1.4907247" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="22408088" data-product-type="Journal Article" data-product-subtype="AC" >https://doi.org/10.1063/1.4907247</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1803485-chiral-spin-wave-velocities-induced-all-garnet-interfacial-dzyaloshinskii-moriya-interaction-ultrathin-yttrium-iron-garnet-films" itemprop="url">Chiral Spin-Wave Velocities Induced by All-Garnet Interfacial Dzyaloshinskii-Moriya Interaction in Ultrathin Yttrium Iron Garnet Films</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Wang, Hanchen</span> ; <span class="author">Chen, Jilei</span> ; <span class="author">Liu, Tao</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review Letters</span> </span> </div> <div class="abstract">Spin waves can probe the Dzyaloshinskii-Moriya interaction (DMI), which gives rise to topological spin textures, such as skyrmions. However, the DMI has not yet been reported in yttrium iron garnet (YIG) with arguably the lowest damping for spin waves. In this work, we experimentally evidence the interfacial DMI in a 7-nm-thick YIG film by measuring the nonreciprocal spin-wave propagation in terms of frequency, amplitude, and most importantly group velocities using all electrical spin-wave spectroscopy. The velocities of propagating spin waves show chirality among three vectors, i.e., the film normal direction, applied field, and spin-wave wave vector. By measuring the asymmetric<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> group velocities, we extract a DMI constant of 16 μJ/m<sup>2</sup>, which we independently confirm by Brillouin light scattering. In this work, thickness-dependent measurements reveal that the DMI originates from the oxide interface between the YIG and garnet substrate. The interfacial DMI discovered in the ultrathin YIG films is of key importance for functional chiral magnonics as ultralow spin-wave damping can be achieved.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1103/physrevlett.124.027203" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1803485" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1103/physrevlett.124.027203</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1803485" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1803485" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/397609-formation-propagation-reflection-collision-microwave-envelope-solitons-yttrium-iron-garnet-films" itemprop="url">Formation, propagation, reflection, and collision of microwave envelope solitons in yttrium iron garnet films</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Kovshikov, N G</span> ; <span class="author">Kalinikos, B A</span> ; <span class="author">Patton, C E</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review, B: Condensed Matter</span> </span> </div> <div class="abstract">The end edge reflection and collision of backward volume wave bright microwave magnetic envelope solitons in long and narrow yttrium iron garnet single-crystal films has been studied experimentally. The experiments were done on 5.1-{mu}m-thick, 1-mm-wide films. The bright solitons were excited by single or double 8{endash}36-ns-wide microwave pulses with a nominal carrier frequency of 5.8 GHz. The experiments utilized a movable transducer structure to make measurements for a range of transducer separations from 2 to 15 mm and for pulses before and after reflection. The soliton character was established from single-pulse decay versus time and distance measurements. Three decay regions<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> were observed, a slow decay region before soliton formation, a fast decay region characteristic of solitons, and a second slow decay for linear pulses. The soliton region included both incident and reflected pulses. The exponential decay rate for the soliton regime was greater than for the linear. The soliton pulses retained the same shape and speed after edge reflection. An observed drop in pulse amplitude after passing under the pickup transducer provided a way to measure the actual power and amplitude of the soliton signal. The measured amplitudes and widths were in fair agreement with predictions for a simple sech-type order one soliton pulse. For properly timed double-pulse experiments in which a reflected lead pulse collides with the follow-on pulse before detection, the effects of soliton collisions could be examined. In the single soliton power regime, the pulses were found to retain their shape and speed after collision. At higher powers, shapes were not retained. In addition, a wake effect was observed in which the lead pulse causes a change in the detected signal for the follow-on pulse, even without collision. {copyright} {ital 1996 The American Physical Society.}</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1103/PhysRevB.54.15210" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="397609" data-product-type="Journal Article" data-product-subtype="AC" >https://doi.org/10.1103/PhysRevB.54.15210</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9;"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator"/> <br/> <div class="col text-center mt-3"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.osti.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="col text-center small" style="margin-top: 0.5em;margin-bottom:2.0rem;"> <div class="row justify-content-center" style="color:white"> <div class="pure-menu pure-menu-horizontal" style='white-space:normal'> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="https://www.osti.gov/disclaim" class="pure-menu-link" target="_blank" ref="noopener noreferrer"><span class="fa fa-institution"></span> Website Policies <span class="d-none d-sm-inline d-print-none" style="color:#737373;">/ Important Links</span></a></li> <li class="pure-menu-item" style='float:none;'><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span>Contact Us</a></li> <li class="d-block d-md-none mb-1"></li> <li class="pure-menu-item" style='float:none;'><a target="_blank" title="Vulnerability Disclosure Program" class="pure-menu-link" href="https://doe.responsibledisclosure.com/hc/en-us" rel="noopener noreferrer">Vulnerability Disclosure Program</a></li> <li class="d-block d-lg-none mb-1"></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.facebook.com/ostigov" target="_blank" class="pure-menu-link social ext fa fa-facebook" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Facebook</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://twitter.com/OSTIgov" target="_blank" class="pure-menu-link social ext fa fa-twitter" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Twitter</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.youtube.com/user/ostigov" target="_blank" class="pure-menu-link social ext fa fa-youtube-play" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Youtube</span></a></li> </ul> </div> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.240327.0205.css" rel="stylesheet"> <script src="/pages/js/pages.240327.0205.js"></script><noscript></noscript> <script src='https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-MML-AM_CHTML' async> MathJax.Hub.Config({ tex2jax: {displayMath: [], inlineMath: [['$$','$$'], ['\\(','\\)']]}, asciimath2jax: {delimiters: []}, skipStartupTypeset: true, webFont: null, CommonHTML: { scale: 84, // mathjx wants to scale everything to 119% by default? mtextFontInherit: true } }); MathJax.Hub.Queue(["Typeset",MathJax.Hub,"item-list"]); MathJax.Hub.Queue(["Typeset",MathJax.Hub,"citation-pagetitle"]); MathJax.Hub.Queue(["Typeset",MathJax.Hub,"citation-abstract"]); </script><noscript></noscript> <script defer src="/pages/js/pages.biblio.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript> <script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- DOE PAGES v.240327.0205 --> </html>