skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intrinsic relative magnetoconductivity of nonmagnetic metals

Abstract

We present a theory of magnetoconductivity for general three-dimensional nonmagnetic metals within the Berry-curvature-corrected semiclassical and Boltzmann framework. Here, we find a contribution, which is intrinsic in the sense that its ratio to the zero-magnetic-field conductivity is fully determined by the intrinsic band properties, independent of the transport relaxation time, showing a clear violation of Kohler's rule. Remarkably, this contribution can generally be positive for the longitudinal configuration, providing a mechanism for the appearance of positive longitudinal magnetoconductivity besides the chiral anomaly effect.

Authors:
 [1];  [2];  [3]
  1. Univ. of Texas, Austin, TX (United States)
  2. Singapore Univ. of Technology and Design (Singapore)
  3. Univ. of Texas, Austin, TX (United States); Peking Univ., Beijing (China)
Publication Date:
Research Org.:
Univ. of Texas, Austin, TX (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE
OSTI Identifier:
1418615
Alternate Identifier(s):
OSTI ID: 1352974
Grant/Contract Number:  
FG03-02ER45958; 2013CB921900; MOE2015-T2-2-144; SUTD-T1-2015004
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 95; Journal Issue: 16; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Gao, Yang, Yang, Shengyuan A., and Niu, Qian. Intrinsic relative magnetoconductivity of nonmagnetic metals. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.95.165135.
Gao, Yang, Yang, Shengyuan A., & Niu, Qian. Intrinsic relative magnetoconductivity of nonmagnetic metals. United States. doi:10.1103/PhysRevB.95.165135.
Gao, Yang, Yang, Shengyuan A., and Niu, Qian. Mon . "Intrinsic relative magnetoconductivity of nonmagnetic metals". United States. doi:10.1103/PhysRevB.95.165135. https://www.osti.gov/servlets/purl/1418615.
@article{osti_1418615,
title = {Intrinsic relative magnetoconductivity of nonmagnetic metals},
author = {Gao, Yang and Yang, Shengyuan A. and Niu, Qian},
abstractNote = {We present a theory of magnetoconductivity for general three-dimensional nonmagnetic metals within the Berry-curvature-corrected semiclassical and Boltzmann framework. Here, we find a contribution, which is intrinsic in the sense that its ratio to the zero-magnetic-field conductivity is fully determined by the intrinsic band properties, independent of the transport relaxation time, showing a clear violation of Kohler's rule. Remarkably, this contribution can generally be positive for the longitudinal configuration, providing a mechanism for the appearance of positive longitudinal magnetoconductivity besides the chiral anomaly effect.},
doi = {10.1103/PhysRevB.95.165135},
journal = {Physical Review B},
number = 16,
volume = 95,
place = {United States},
year = {2017},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) Intrinsic magnetoconductivities for model (12) versus the chemical potential. Here σ⟂0 and σ||0 are zero- magnetic- eld conductivities under transverse and longitudi- nal con gurations respectively. (b) Ratio between magne- toconductivity $\delta$σ and zero-magnetic- eld resistivity σ0 ver- sus the angle $\theta$ between E and B fields,more » as illustrated in the inset. Here the model parameters are chosen as B = 2T, Δ = 50meV, $v$F = 9.2 x 105m/s, and m* = 0.1me (me is the free electron mass). In (b) we take μ = 60meV.« less

Save / Share:

Works referenced in this record:

Anomalous conductivity tensor in the Dirac semimetal Na 3 Bi
journal, April 2016


Resistivity plateau and extremely large magnetoresistance in NbAs 2 and TaAs 2
journal, July 2016


Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs
journal, August 2015


Dirac versus Weyl Fermions in Topological Insulators: Adler-Bell-Jackiw Anomaly in Transport Phenomena
journal, December 2013


Linear magnetoconductivity in an intrinsic topological Weyl semimetal
journal, May 2016


Necessary and sufficient condition for longitudinal magnetoresistance
journal, June 2010


Dirac and Weyl Materials: Fundamental Aspects and Some Spintronics Applications
journal, June 2016


Chiral Anomaly and Diffusive Magnetotransport in Weyl Metals
journal, December 2014


Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires
journal, December 2015

  • Li, Cai-Zhen; Wang, Li-Xian; Liu, Haiwen
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10137

Classification of stable three-dimensional Dirac semimetals with nontrivial topology
journal, September 2014

  • Yang, Bohm-Jung; Nagaosa, Naoto
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5898

Magnetotransport phenomena related to the chiral anomaly in Weyl semimetals
journal, February 2016


Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal
journal, February 2016

  • Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10735

Dirac Semimetal in Three Dimensions
journal, April 2012


Negative longitudinal magnetoresistance in Dirac and Weyl metals
journal, June 2015


The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal
journal, November 1983


Geometrical effects in orbital magnetic susceptibility
journal, June 2015


Axial anomaly and longitudinal magnetoresistance of a generic three-dimensional metal
journal, August 2015


Berry Phase Correction to Electron Density of States in Solids
journal, September 2005


Linear magnetoresistance in metals: Guiding center diffusion in a smooth random potential
journal, November 2015


Resistivity plateau and negative magnetoresistance in the topological semimetal TaSb 2
journal, September 2016


Chiral anomaly and classical negative magnetoresistance of Weyl metals
journal, September 2013


Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials
journal, November 2015


Large magnetoresistance in compensated semimetals TaAs 2 and NbAs 2
journal, May 2016


Anomalous electronic structure and magnetoresistance in TaAs2
journal, June 2016

  • Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep27294

Field Induced Positional Shift of Bloch Electrons and Its Dynamical Implications
journal, April 2014


Longitudinal Magnetoresistance in the Quantum Limit
journal, November 1956


Transport and magnetotransport in three-dimensional Weyl semimetals
journal, December 2015


Electromagnetic Response of Weyl Semimetals
journal, July 2013


Negative magnetoresistance in Dirac semimetal Cd3As2
journal, January 2016

  • Li, Hui; He, Hongtao; Lu, Hai-Zhou
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10301

On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance
journal, August 2016


Berry phase effects on electronic properties
journal, July 2010


Violation of Kohler’s rule by the magnetoresistance of a quasi-two-dimensional organic metal
journal, May 1998


Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates
journal, May 2011


Topological Invariants of Metals and the Related Physical Effects
journal, February 2013


Evidence for the chiral anomaly in the Dirac semimetal Na3Bi
journal, September 2015


Unconventional dc Transport in Rashba Electron Gases
journal, April 2016


    Figures / Tables found in this record:

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.