skip to main content


Title: Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO 2 Reduction

Here, copper electrodes, prepared by reduction of oxidized metallic copper, have been reported to exhibit higher activity for the electrochemical reduction of CO 2 and better selectivity toward C 2 and C 3 (C 2+) products than metallic copper that has not been preoxidized. We report here an investigation of the effects of four different preparations of oxide-derived electrocatalysts on their activity and selectivity for CO 2 reduction, with particular attention given to the selectivity to C 2+ products. All catalysts were tested for CO 2 reduction in 0.1 M KHCO 3 and 0.1 M CsHCO 3 at applied voltages in the range from –0.7 to –1.0 V vs RHE. The best performing oxide-derived catalysts show up to ~70% selectivity to C 2+ products and only ~3% selectivity to C 1 products at –1.0 V vs RHE when CsHCO 3 is used as the electrolyte. In contrast, the selectivity to C 2+ products decreases to ~56% for the same catalysts tested in KHCO 3. By studying all catalysts under identical conditions, the key factors affecting product selectivity could be discerned. These efforts reveal that the surface area of the oxide-derived layer is a critical parameter affecting selectivity. A high selectivitymore » to C 2+ products is attained at an overpotential of –1 V vs RHE by operating at a current density sufficiently high to achieve a moderately high pH near the catalyst surface but not so high as to cause a significant reduction in the local concentration of CO 2. On the basis of recent theoretical studies, a high pH suppresses the formation of C 1 relative to C 2+ products. At the same time, however, a high local CO 2 concentration is necessary for the formation of C 2+ products.« less
 [1] ;  [2] ;  [1] ; ORCiD logo [1] ; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  2. Center for High Pressure Science and Technology Advanced Research, Shanghai (People's Republic of China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 121; Journal Issue: 26; Journal ID: ISSN 1932-7447
American Chemical Society
Research Org:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division
Country of Publication:
United States
OSTI Identifier: