skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630

Abstract

Rhodococcus opacus PD630 is a non-model, gram positive bacterium that possesses desirable traits for biomass conversion, including consumption capabilities for lignocellulose-based sugars and toxic lignin-derived aromatic compounds, significant triacylglycerol accumulation, relatively rapid growth rate, and genetic tractability. However, few genetic elements have been directly characterized in R. opacus, limiting its application for lignocellulose bioconversion. Here, we report the characterization and development of genetic tools for tunable gene expression in R. opacus, including: 1) six fluorescent reporters for quantifying promoter output, 2) three chemically inducible promoters for variable gene expression, and 3) two classes of metabolite sensors derived from native R. opacus promoters that detect nitrogen levels or aromatic compounds. Using these tools, we also provide insights into native aromatic consumption pathways in R. opacus. Overall, this work expands the ability to control and characterize gene expression in R. opacus for future lignocellulose-based fuel and chemical production.

Authors:
 [1];  [1]; ORCiD logo [1]
  1. Washington Univ., St. Louis, MO (United States)
Publication Date:
Research Org.:
Washington Univ., St. Louis, MO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1417982
Grant/Contract Number:  
SC0012705
Resource Type:
Accepted Manuscript
Journal Name:
ACS Synthetic Biology
Additional Journal Information:
Journal Volume: 6; Journal Issue: 10; Journal ID: ISSN 2161-5063
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; Rhodococcus opacus; lignin; promoter; sensor; nitrogen; aromatic

Citation Formats

DeLorenzo, Drew M., Henson, William R., and Moon, Tae Seok. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630. United States: N. p., 2017. Web. https://doi.org/10.1021/acssynbio.7b00192.
DeLorenzo, Drew M., Henson, William R., & Moon, Tae Seok. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630. United States. https://doi.org/10.1021/acssynbio.7b00192
DeLorenzo, Drew M., Henson, William R., and Moon, Tae Seok. Wed . "Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630". United States. https://doi.org/10.1021/acssynbio.7b00192. https://www.osti.gov/servlets/purl/1417982.
@article{osti_1417982,
title = {Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630},
author = {DeLorenzo, Drew M. and Henson, William R. and Moon, Tae Seok},
abstractNote = {Rhodococcus opacus PD630 is a non-model, gram positive bacterium that possesses desirable traits for biomass conversion, including consumption capabilities for lignocellulose-based sugars and toxic lignin-derived aromatic compounds, significant triacylglycerol accumulation, relatively rapid growth rate, and genetic tractability. However, few genetic elements have been directly characterized in R. opacus, limiting its application for lignocellulose bioconversion. Here, we report the characterization and development of genetic tools for tunable gene expression in R. opacus, including: 1) six fluorescent reporters for quantifying promoter output, 2) three chemically inducible promoters for variable gene expression, and 3) two classes of metabolite sensors derived from native R. opacus promoters that detect nitrogen levels or aromatic compounds. Using these tools, we also provide insights into native aromatic consumption pathways in R. opacus. Overall, this work expands the ability to control and characterize gene expression in R. opacus for future lignocellulose-based fuel and chemical production.},
doi = {10.1021/acssynbio.7b00192},
journal = {ACS Synthetic Biology},
number = 10,
volume = 6,
place = {United States},
year = {2017},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels
journal, August 2013

  • Balan, Venkatesh; Chiaramonti, David; Kumar, Sandeep
  • Biofuels, Bioproducts and Biorefining, Vol. 7, Issue 6
  • DOI: 10.1002/bbb.1436

The new forestry biofuels sector
journal, January 2008

  • Pu, Yunqiao; Zhang, Dongcheng; Singh, Preet M.
  • Biofuels, Bioproducts and Biorefining, Vol. 2, Issue 1
  • DOI: 10.1002/bbb.48

Opportunities and challenges in biological lignin valorization
journal, December 2016


Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors
journal, January 2015

  • Kurosawa, Kazuhiko; Laser, Josephine; Sinskey, Anthony J.
  • Biotechnology for Biofuels, Vol. 8, Issue 1
  • DOI: 10.1186/s13068-015-0258-3

Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development
journal, September 2011


Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630
journal, June 1996

  • Alvarez, Hector M.; Mayer, Frank; Fabritius, Dirk
  • Archives of Microbiology, Vol. 165, Issue 6
  • DOI: 10.1007/s002030050341

Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630
journal, February 2016

  • Yoneda, Aki; Henson, William R.; Goldner, Nicholas K.
  • Nucleic Acids Research, Vol. 44, Issue 5
  • DOI: 10.1093/nar/gkw055

Methods in Lignin Chemistry
book, January 1992


Adipic acid production from lignin
journal, January 2015

  • Vardon, Derek R.; Franden, Mary Ann; Johnson, Christopher W.
  • Energy & Environmental Science, Vol. 8, Issue 2
  • DOI: 10.1039/C4EE03230F

Metabolic engineering strategies to bio-adipic acid production
journal, June 2017


Biological Production of Muconic Acid via a Prokaryotic 2,3-Dihydroxybenzoic Acid Decarboxylase
journal, July 2014


Rapid metabolic analysis of Rhodococcus opacus PD630 via parallel 13 C-metabolite fingerprinting
journal, September 2015

  • Hollinshead, Whitney D.; Henson, William R.; Abernathy, Mary
  • Biotechnology and Bioengineering, Vol. 113, Issue 1
  • DOI: 10.1002/bit.25702

Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production
journal, January 2013

  • Kurosawa, Kazuhiko; Wewetzer, Sandra J.; Sinskey, Anthony J.
  • Biotechnology for Biofuels, Vol. 6, Issue 1
  • DOI: 10.1186/1754-6834-6-134

High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production
journal, June 2010


Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci
journal, January 2017

  • Le, Rosemary K.; Wells Jr., Tyrone; Das, Parthapratim
  • RSC Advances, Vol. 7, Issue 7
  • DOI: 10.1039/C6RA28033A

Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewater
journal, May 2017


Establishment of Cellobiose Utilization for Lipid Production in Rhodococcus opacus PD630
journal, February 2013

  • Hetzler, Stephan; Steinbüchel, Alexander
  • Applied and Environmental Microbiology, Vol. 79, Issue 9
  • DOI: 10.1128/AEM.03678-12

Engineering l-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production
journal, July 2015


Saccharification of Cellulose by Recombinant Rhodococcus opacus PD630 Strains
journal, June 2013

  • Hetzler, Stephan; Bröker, Daniel; Steinbüchel, Alexander
  • Applied and Environmental Microbiology, Vol. 79, Issue 17
  • DOI: 10.1128/AEM.01214-13

Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay
journal, September 2013

  • Lee, Michael E.; Aswani, Anil; Han, Audrey S.
  • Nucleic Acids Research, Vol. 41, Issue 22
  • DOI: 10.1093/nar/gkt809

Improving fatty acids production by engineering dynamic pathway regulation and metabolic control
journal, July 2014

  • Xu, P.; Li, L.; Zhang, F.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 31
  • DOI: 10.1073/pnas.1406401111

Programmable genetic circuits for pathway engineering
journal, December 2015


Physical, chemical, and metabolic state sensors expand the synthetic biology toolbox for Synechocystis sp. PCC 6803 : New Sensors for
journal, March 2017

  • Immethun, Cheryl M.; DeLorenzo, Drew M.; Focht, Caroline M.
  • Biotechnology and Bioengineering, Vol. 114, Issue 7
  • DOI: 10.1002/bit.26275

Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor
journal, January 2005


Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform
journal, February 2017


Microbial production of fatty acid-derived fuels and chemicals
journal, December 2013


Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii
journal, June 2014

  • Szőköl, Juraj; Rucká, Lenka; Šimčíková, Michaela
  • Applied Microbiology and Biotechnology, Vol. 98, Issue 19
  • DOI: 10.1007/s00253-014-5881-6

Lignin to lipid bioconversion by oleaginous Rhodococci
journal, January 2013

  • Kosa, Matyas; Ragauskas, Arthur J.
  • Green Chemistry, Vol. 15, Issue 8
  • DOI: 10.1039/c3gc40434j

Catabolism of Benzoate and Phthalate in Rhodococcus sp. Strain RHA1: Redundancies and Convergence
journal, June 2005


Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity
journal, December 2016

  • Johnson, Christopher W.; Salvachúa, Davinia; Khanna, Payal
  • Metabolic Engineering Communications, Vol. 3
  • DOI: 10.1016/j.meteno.2016.04.002

Control of the acetamidase gene of Mycobacterium smegmatis by multiple regulators
journal, April 2003


    Works referencing / citing this record:

    Boosting Secondary Metabolite Production and Discovery through the Engineering of Novel Microbial Biosensors
    journal, July 2018

    • de Frias, Ulysses Amancio; Pereira, Greicy Kelly Bonifacio; Guazzaroni, María-Eugenia
    • BioMed Research International, Vol. 2018
    • DOI: 10.1155/2018/7021826

    Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains
    journal, March 2019


    Development of Rhodococcus opacus as a chassis for lignin valorization and bioproduction of high-value compounds
    journal, August 2019

    • Anthony, Winston E.; Carr, Rhiannon R.; DeLorenzo, Drew M.
    • Biotechnology for Biofuels, Vol. 12, Issue 1
    • DOI: 10.1186/s13068-019-1535-3

    Selection of stable reference genes for RT-qPCR in Rhodococcus opacus PD630
    journal, April 2018


    Lipid metabolism of phenol-tolerant Rhodococcus opacus strains for lignin bioconversion
    journal, December 2018

    • Henson, William R.; Hsu, Fong-Fu; Dantas, Gautam
    • Biotechnology for Biofuels, Vol. 11, Issue 1
    • DOI: 10.1186/s13068-018-1337-z