DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS2 by Raman Thermometry

Abstract

The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS2 with AlN and SiO2, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ~ 15 MW m–2 K–1 near room temperature, increasing as ~ T0.65 in the range 300–600 K. The similar TBC of MoS2 with the two substrates indicates that MoS2 is the “softer” material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. As a result, our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [1];  [1];  [3];  [1]; ORCiD logo [1];  [1];  [1];  [2]; ORCiD logo [1]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Stanford Univ., Stanford, CA (United States); Univ. of Pittsburgh, Pittsburgh, PA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1417661
Grant/Contract Number:  
AC02-76SF00515; DGE-114747; EEC-1449548; 1542883; 1534279
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 9; Journal Issue: 49; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 2D materials; aluminum nitride (AlN); Kapitza length; MoS2; optical absorption; Raman thermometry; thermal boundary conductance (TBC)

Citation Formats

Yalon, Eilam, Aslan, Ozgur Burak, Smithe, Kirby K. H., McClellan, Connor J., Suryavanshi, Saurabh V., Xiong, Feng, Sood, Aditya, Neumann, Christopher M., Xu, Xiaoqing, Goodson, Kenneth E., Heinz, Tony F., and Pop, Eric. Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS2 by Raman Thermometry. United States: N. p., 2017. Web. doi:10.1021/acsami.7b11641.
Yalon, Eilam, Aslan, Ozgur Burak, Smithe, Kirby K. H., McClellan, Connor J., Suryavanshi, Saurabh V., Xiong, Feng, Sood, Aditya, Neumann, Christopher M., Xu, Xiaoqing, Goodson, Kenneth E., Heinz, Tony F., & Pop, Eric. Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS2 by Raman Thermometry. United States. https://doi.org/10.1021/acsami.7b11641
Yalon, Eilam, Aslan, Ozgur Burak, Smithe, Kirby K. H., McClellan, Connor J., Suryavanshi, Saurabh V., Xiong, Feng, Sood, Aditya, Neumann, Christopher M., Xu, Xiaoqing, Goodson, Kenneth E., Heinz, Tony F., and Pop, Eric. Fri . "Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS2 by Raman Thermometry". United States. https://doi.org/10.1021/acsami.7b11641. https://www.osti.gov/servlets/purl/1417661.
@article{osti_1417661,
title = {Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS2 by Raman Thermometry},
author = {Yalon, Eilam and Aslan, Ozgur Burak and Smithe, Kirby K. H. and McClellan, Connor J. and Suryavanshi, Saurabh V. and Xiong, Feng and Sood, Aditya and Neumann, Christopher M. and Xu, Xiaoqing and Goodson, Kenneth E. and Heinz, Tony F. and Pop, Eric},
abstractNote = {The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS2 with AlN and SiO2, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ~ 15 MW m–2 K–1 near room temperature, increasing as ~ T0.65 in the range 300–600 K. The similar TBC of MoS2 with the two substrates indicates that MoS2 is the “softer” material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. As a result, our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.},
doi = {10.1021/acsami.7b11641},
journal = {ACS Applied Materials and Interfaces},
number = 49,
volume = 9,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Energy Dissipation in Monolayer MoS 2 Electronics
journal, May 2017


Thermal properties of graphene: Fundamentals and applications
journal, November 2012

  • Pop, Eric; Varshney, Vikas; Roy, Ajit K.
  • MRS Bulletin, Vol. 37, Issue 12
  • DOI: 10.1557/mrs.2012.203

S2DS: Physics-based compact model for circuit simulation of two-dimensional semiconductor devices including non-idealities
journal, December 2016

  • Suryavanshi, Saurabh V.; Pop, Eric
  • Journal of Applied Physics, Vol. 120, Issue 22
  • DOI: 10.1063/1.4971404

Effective n-type doping of monolayer MoS2 by AlOx
conference, June 2017

  • McClellan, Connor J.; Yalon, Eilam; Smithe, Kirby K. H.
  • 2017 75th Device Research Conference (DRC), 2017 75th Annual Device Research Conference (DRC)
  • DOI: 10.1109/DRC.2017.7999392

Thermal Boundary Conductance: A Materials Science Perspective
journal, July 2016


Energy coupling across low-dimensional contact interfaces at the atomic scale
journal, July 2017


Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction
journal, February 2014

  • Chen, Chun-Chung; Li, Zhen; Shi, Li
  • Applied Physics Letters, Vol. 104, Issue 8
  • DOI: 10.1063/1.4866335

Energy Dissipation in Graphene Field-Effect Transistors
journal, May 2009

  • Freitag, Marcus; Steiner, Mathias; Martin, Yves
  • Nano Letters, Vol. 9, Issue 5, p. 1883-1888
  • DOI: 10.1021/nl803883h

Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition
journal, May 2010

  • Cai, Weiwei; Moore, Arden L.; Zhu, Yanwu
  • Nano Letters, Vol. 10, Issue 5, p. 1645-1651
  • DOI: 10.1021/nl9041966

Temperature-Dependent Thermal Properties of Supported MoS 2 Monolayers
journal, February 2015

  • Taube, Andrzej; Judek, Jarosław; Łapińska, Anna
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 9
  • DOI: 10.1021/acsami.5b00690

Measurement of Lateral and Interfacial Thermal Conductivity of Single- and Bilayer MoS 2 and MoSe 2 Using Refined Optothermal Raman Technique
journal, November 2015

  • Zhang, Xian; Sun, Dezheng; Li, Yilei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 46
  • DOI: 10.1021/acsami.5b08580

High accuracy determination of the thermal properties of supported 2D materials
journal, July 2015

  • Judek, Jarosław; Gertych, Arkadiusz P.; Świniarski, Michał
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep12422

Interfacial Thermal Transport in Monolayer MoS 2 - and Graphene-Based Devices
journal, July 2017

  • Yasaei, Poya; Foss, Cameron J.; Karis, Klas
  • Advanced Materials Interfaces, Vol. 4, Issue 17
  • DOI: 10.1002/admi.201700334

Intrinsic electrical transport and performance projections of synthetic monolayer MoS 2 devices
journal, November 2016


Wafer-level MOCVD growth of AlGaN/GaN-on-Si HEMT structures with ultra-high room temperature 2DEG mobility
journal, November 2016

  • Xu, Xiaoqing; Zhong, Jiebin; So, Hongyun
  • AIP Advances, Vol. 6, Issue 11
  • DOI: 10.1063/1.4967816

Low Variability in Synthetic Monolayer MoS 2 Devices
journal, July 2017

  • Smithe, Kirby K. H.; Suryavanshi, Saurabh V.; Muñoz Rojo, Miguel
  • ACS Nano, Vol. 11, Issue 8
  • DOI: 10.1021/acsnano.7b04100

Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film
journal, May 2008

  • Chien, Heng-Chieh; Yao, Da-Jeng; Huang, Mei-Jiau
  • Review of Scientific Instruments, Vol. 79, Issue 5
  • DOI: 10.1063/1.2927253

Thermal conduction in doped single-crystal silicon films
journal, April 2002

  • Asheghi, M.; Kurabayashi, K.; Kasnavi, R.
  • Journal of Applied Physics, Vol. 91, Issue 8
  • DOI: 10.1063/1.1458057

Mobility and saturation velocity in graphene on SiO2
journal, August 2010

  • Dorgan, Vincent E.; Bae, Myung-Ho; Pop, Eric
  • Applied Physics Letters, Vol. 97, Issue 8
  • DOI: 10.1063/1.3483130

Heat transport in thin dielectric films
journal, March 1997

  • Lee, S. -M.; Cahill, David G.
  • Journal of Applied Physics, Vol. 81, Issue 6
  • DOI: 10.1063/1.363923

Thermal conductance of interfaces with amorphous SiO 2 measured by time-resolved magneto-optic Kerr-effect thermometry
journal, May 2017

  • Kimling, Judith; Philippi-Kobs, André; Jacobsohn, Jonathan
  • Physical Review B, Vol. 95, Issue 18
  • DOI: 10.1103/PhysRevB.95.184305

Measurement of porous silicon thermal conductivity by micro-Raman scattering
journal, October 1999

  • Périchon, S.; Lysenko, V.; Remaki, B.
  • Journal of Applied Physics, Vol. 86, Issue 8
  • DOI: 10.1063/1.371424

Superior Thermal Conductivity of Single-Layer Graphene
journal, March 2008

  • Balandin, Alexander A.; Ghosh, Suchismita; Bao, Wenzhong
  • Nano Letters, Vol. 8, Issue 3, p. 902-907
  • DOI: 10.1021/nl0731872

Energy dissipation and transport in nanoscale devices
journal, March 2010


Thermal Conductivity of Monolayer Molybdenum Disulfide Obtained from Temperature-Dependent Raman Spectroscopy
journal, December 2013

  • Yan, Rusen; Simpson, Jeffrey R.; Bertolazzi, Simone
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn405826k

Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2
journal, November 2014


Thermal boundary resistance
journal, July 1989


Heat Conduction across Monolayer and Few-Layer Graphenes
journal, November 2010

  • Koh, Yee Kan; Bae, Myung-Ho; Cahill, David G.
  • Nano Letters, Vol. 10, Issue 11, p. 4363-4368
  • DOI: 10.1021/nl101790k

Thermal contact resistance between graphene and silicon dioxide
journal, October 2009

  • Chen, Z.; Jang, W.; Bao, W.
  • Applied Physics Letters, Vol. 95, Issue 16
  • DOI: 10.1063/1.3245315

Theory of the Specific Heat of Graphite II
journal, May 1955

  • Komatsu, Kozo
  • Journal of the Physical Society of Japan, Vol. 10, Issue 5
  • DOI: 10.1143/JPSJ.10.346

Structure and electronic properties of graphite nanoparticles
journal, December 1998


Optical Properties of Heavily Doped Silicon between 1.5 and 4.1 eV
journal, May 1981


Thermal Conductance of the 2D MoS2/h-BN and graphene/h-BN Interfaces
journal, March 2017

  • Liu, Yi; Ong, Zhun-Yong; Wu, Jing
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep43886

Lattice dynamics of hexagonal Mo S 2 studied by neutron scattering
journal, July 1975


Temperature dependence of energies and broadening parameters of the band-edge excitons of single crystals
journal, October 1998


Determination of interfacial thermal resistance at the nanoscale
journal, May 2011


Heat transfer mechanism across few-layer graphene by molecular dynamics
journal, July 2013


Phonon populations and electrical power dissipation in carbon nanotube transistors
journal, March 2009

  • Steiner, Mathias; Freitag, Marcus; Perebeinos, Vasili
  • Nature Nanotechnology, Vol. 4, Issue 5
  • DOI: 10.1038/nnano.2009.22

Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect
journal, December 2014

  • Liu, Jun; Choi, Gyung-Min; Cahill, David G.
  • Journal of Applied Physics, Vol. 116, Issue 23
  • DOI: 10.1063/1.4904513

Measurement of the Optical Conductivity of Graphene
journal, November 2008


Differential reflection spectroscopy of very thin surface films
journal, February 1971


Absorptance of thin films
journal, January 1977


Works referencing / citing this record:

Quantifying thermal boundary conductance of 2D–3D interfaces
journal, February 2019


A Review on Investigation of Graphene Thermal Property: Recent Development in Measurement Techniques
journal, July 2019

  • Pyun, Kyung Rok; Jung, Yeongju; Lee, Ming-Tsang
  • Multiscale Science and Engineering, Vol. 1, Issue 4
  • DOI: 10.1007/s42493-019-00024-2

Anomalous lattice vibrations of CVD-grown monolayer MoS 2 probed using linear polarized excitation light
journal, January 2019

  • Li, Feng; Huang, Teng-De; Lan, Yann-Wen
  • Nanoscale, Vol. 11, Issue 29
  • DOI: 10.1039/c9nr03203g

Engineering Field Effect Transistors with 2D Semiconducting Channels: Status and Prospects
journal, July 2019

  • Jing, Xu; Illarionov, Yury; Yalon, Eilam
  • Advanced Functional Materials, Vol. 30, Issue 18
  • DOI: 10.1002/adfm.201901971

Thermal boundary conductance of two-dimensional MoS 2 interfaces
journal, August 2019

  • Suryavanshi, Saurabh V.; Gabourie, Alexander J.; Barati Farimani, Amir
  • Journal of Applied Physics, Vol. 126, Issue 5
  • DOI: 10.1063/1.5092287

Study of the photoresponse behavior of a high barrier Pd/MoS 2 /Pd photodetector
journal, June 2019

  • Moun, Monika; Singh, Aditya; Tak, B. R.
  • Journal of Physics D: Applied Physics, Vol. 52, Issue 32
  • DOI: 10.1088/1361-6463/ab1f59

Thermal properties of thin films made from MoS2 nanoflakes and probed via statistical optothermal Raman method
journal, September 2019

  • Gertych, Arkadiusz P.; Łapińska, Anna; Czerniak-Łosiewicz, Karolina
  • Scientific Reports, Vol. 9, Issue 1
  • DOI: 10.1038/s41598-019-49980-7

Predicting interfacial thermal resistance by machine learning
journal, May 2019


Energy dissipation in van der Waals 2D devices
journal, June 2019


Thermal Transport in 2D Semiconductors—Considerations for Device Applications
journal, August 2019

  • Zhao, Yunshan; Cai, Yongqing; Zhang, Lifa
  • Advanced Functional Materials, Vol. 30, Issue 8
  • DOI: 10.1002/adfm.201903929

Interfacial Thermal Contact Conductance inside the Graphene–Bi 2 Te 3 Heterostructure
journal, May 2019

  • Pyun, Kyung Rok; Kihm, Kenneth David; Cheon, Sosan
  • Advanced Materials Interfaces
  • DOI: 10.1002/admi.201900275

Flattening van der Waals heterostructure interfaces by local thermal treatment
journal, December 2019

  • Boddison-Chouinard, Justin; Scarfe, Samantha; Watanabe, K.
  • Applied Physics Letters, Vol. 115, Issue 23
  • DOI: 10.1063/1.5131022

Engineering thermal and electrical interface properties of phase change memory with monolayer MoS 2
journal, February 2019

  • Neumann, Christopher M.; Okabe, Kye L.; Yalon, Eilam
  • Applied Physics Letters, Vol. 114, Issue 8
  • DOI: 10.1063/1.5080959

Nanoscale Thermal Transport in 2D Nanostructures from Cryogenic to Room Temperature
journal, August 2019

  • Evangeli, Charalambos; Spiece, Jean; Sangtarash, Sara
  • Advanced Electronic Materials, Vol. 5, Issue 10
  • DOI: 10.1002/aelm.201900331

Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials
journal, August 2019

  • Vaziri, Sam; Yalon, Eilam; Muñoz Rojo, Miguel
  • Science Advances, Vol. 5, Issue 8
  • DOI: 10.1126/sciadv.aax1325

Direct Observation of Monolayer MoS2 Prepared by CVD Using In-Situ Differential Reflectance Spectroscopy
journal, November 2019


Direct observation of the CVD growth of monolayer MoS 2 using in situ optical spectroscopy
journal, January 2019

  • López-Posadas, Claudia Beatriz; Wei, Yaxu; Shen, Wanfu
  • Beilstein Journal of Nanotechnology, Vol. 10
  • DOI: 10.3762/bjnano.10.57

Thermal conductivity of crystalline AlN and the influence of atomic-scale defects
journal, November 2019

  • Xu, Runjie Lily; Muñoz Rojo, Miguel; Islam, S. M.
  • Journal of Applied Physics, Vol. 126, Issue 18
  • DOI: 10.1063/1.5097172

Raman Characterization on Two-Dimensional Materials-Based Thermoelectricity
journal, December 2018


Physical and chemical descriptors for predicting interfacial thermal resistance
journal, February 2020


Thermal Boundary Conductance of Two-Dimensional $MoS_{2}$ Interfaces
text, January 2019


Engineering Thermal and Electrical Interface Properties of Phase Change Memory with Monolayer MoS2
text, January 2019