skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes

Abstract

Polymer binders in battery electrodes may be either active or passive. This distinction depends on whether the polymer influences charge or mass transport in the electrode. Though it is desirable to understand how to tailor the macromolecular design of a polymer to play a passive or active role, design rules are still lacking, as is a framework to assess the divergence in such behaviors. We reveal the molecular-level underpinnings that distinguish an active polyelectrolyte binder designed for lithium-sulfur batteries from a passive alternative. The binder, a cationic polyelectrolyte, is shown to both facilitate lithium-ion transport through its reconfigurable network of mobile anions and restrict polysulfide diffusion from mesoporous carbon hosts by anion metathesis, which we show is selective for higher oligomers. These attributes then allow cells to be operated for > 100 cycles with excellent rate capability using cathodes with areal sulfur loadings up to 8.1 mg cm -2 .

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [4];  [5];  [1];  [4]; ORCiD logo [6]; ORCiD logo [6]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Energy Storage Research
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research
  4. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering
  5. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Energy Storage Research, Molecular Foundry
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
SC-22.2 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; USDOE Office of Science (SC), Office of Basic Energy Sciences (BES) (SC-22). Joint Center for Energy Storage Research (JCESR); USDOE Office of Science (SC), National Energy Research Scientific Computing Center (NERSC); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division
OSTI Identifier:
1417620
Alternate Identifier(s):
OSTI ID: 1489228
Grant/Contract Number:  
AC02-05CH11231; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE; batteries; polymer characterization

Citation Formats

Li, Longjun, Pascal, Tod A., Connell, Justin G., Fan, Frank Y., Meckler, Stephen M., Ma, Lin, Chiang, Yet-Ming, Prendergast, David, and Helms, Brett A. Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. United States: N. p., 2017. Web. doi:10.1038/s41467-017-02410-6.
Li, Longjun, Pascal, Tod A., Connell, Justin G., Fan, Frank Y., Meckler, Stephen M., Ma, Lin, Chiang, Yet-Ming, Prendergast, David, & Helms, Brett A. Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. United States. doi:10.1038/s41467-017-02410-6.
Li, Longjun, Pascal, Tod A., Connell, Justin G., Fan, Frank Y., Meckler, Stephen M., Ma, Lin, Chiang, Yet-Ming, Prendergast, David, and Helms, Brett A. Fri . "Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes". United States. doi:10.1038/s41467-017-02410-6. https://www.osti.gov/servlets/purl/1417620.
@article{osti_1417620,
title = {Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes},
author = {Li, Longjun and Pascal, Tod A. and Connell, Justin G. and Fan, Frank Y. and Meckler, Stephen M. and Ma, Lin and Chiang, Yet-Ming and Prendergast, David and Helms, Brett A.},
abstractNote = {Polymer binders in battery electrodes may be either active or passive. This distinction depends on whether the polymer influences charge or mass transport in the electrode. Though it is desirable to understand how to tailor the macromolecular design of a polymer to play a passive or active role, design rules are still lacking, as is a framework to assess the divergence in such behaviors. We reveal the molecular-level underpinnings that distinguish an active polyelectrolyte binder designed for lithium-sulfur batteries from a passive alternative. The binder, a cationic polyelectrolyte, is shown to both facilitate lithium-ion transport through its reconfigurable network of mobile anions and restrict polysulfide diffusion from mesoporous carbon hosts by anion metathesis, which we show is selective for higher oligomers. These attributes then allow cells to be operated for > 100 cycles with excellent rate capability using cathodes with areal sulfur loadings up to 8.1 mg cm -2 .},
doi = {10.1038/s41467-017-02410-6},
journal = {Nature Communications},
number = 1,
volume = 8,
place = {United States},
year = {2017},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 34 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Illustration of the fabrication of sulfur electrodes with PVDF or PEB-1 binder. a The cathode is comprised of sulfur-active materials loaded into N-doped mesoporous carbon (N-MC) hosts, ‘Super P’ as the conductive additive, and a polymer binder (PEB-1 or PVDF). b A conventional sulfur cathode cast onto anmore » aluminum current collector. c A highly loaded sulfur cathode cast onto a carbon nanofibre current collector. d Schematic illustrating the formation of complex ion clusters via anion metathesis, when PEB-1 encounters soluble polysulfides during Li–S cell cycling« less

Save / Share:

Works referenced in this record:

Insights into Li-S Battery Cathode Capacity Fading Mechanisms: Irreversible Oxidation of Active Mass during Cycling
journal, January 2012

  • Diao, Yan; Xie, Kai; Xiong, Shizhao
  • Journal of The Electrochemical Society, Vol. 159, Issue 11
  • DOI: 10.1149/2.020211jes

Structural Factors of Sulfur Cathodes with Poly(ethylene oxide) Binder for Performance of Rechargeable Lithium Sulfur Batteries
journal, January 2002

  • Cheon, Sang-Eun; Cho, Ji-Hoon; Ko, Ki-Seok
  • Journal of The Electrochemical Society, Vol. 149, Issue 11, p. A1437-A1441
  • DOI: 10.1149/1.1511187

An Elastic, Conductive, Electroactive Nanocomposite Binder for Flexible Sulfur Cathodes in Lithium-Sulfur Batteries
journal, September 2016


A high performance lithium-ion sulfur battery based on a Li 2 S cathode using a dual-phase electrolyte
journal, January 2015

  • Wang, Lina; Wang, Yonggang; Xia, Yongyao
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C5EE00058K

QTPIE: Charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics
journal, April 2007


Why PEO as a binder or polymer coating increases capacity in the Li–S system
journal, January 2013

  • Lacey, Matthew J.; Jeschull, Fabian; Edström, Kristina
  • Chemical Communications, Vol. 49, Issue 76
  • DOI: 10.1039/c3cc44772c

Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes
journal, March 2009


Enhanced Cyclability for Sulfur Cathode Achieved by a Water-Soluble Binder
journal, July 2011

  • He, Min; Yuan, Li-Xia; Zhang, Wu-Xing
  • The Journal of Physical Chemistry C, Vol. 115, Issue 31
  • DOI: 10.1021/jp2043416

Strong Sulfur Binding with Conducting Magnéli-Phase Ti n O 2 n –1 Nanomaterials for Improving Lithium–Sulfur Batteries
journal, August 2014

  • Tao, Xinyong; Wang, Jianguo; Ying, Zhuogao
  • Nano Letters, Vol. 14, Issue 9
  • DOI: 10.1021/nl502331f

Fingerprinting Lithium-Sulfur Battery Reaction Products by X-ray Absorption Spectroscopy
journal, January 2014

  • Wujcik, Kevin H.; Velasco-Velez, Juan; Wu, Cheng Hao
  • Journal of The Electrochemical Society, Vol. 161, Issue 6
  • DOI: 10.1149/2.078406jes

Charge equilibration for molecular dynamics simulations
journal, April 1991

  • Rappe, Anthony K.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 95, Issue 8
  • DOI: 10.1021/j100161a070

Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes
journal, January 2013

  • Zu, Chenxi; Fu, Yongzhu; Manthiram, Arumugam
  • Journal of Materials Chemistry A, Vol. 1, Issue 35
  • DOI: 10.1039/c3ta11958k

Introducing ion-transport-regulating nanochannels to lithium-sulfur batteries
journal, March 2017


Phosphorous Pentasulfide as a Novel Additive for High-Performance Lithium-Sulfur Batteries
journal, June 2012

  • Lin, Zhan; Liu, Zengcai; Fu, Wujun
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200696

Li-S Battery Analyzed by UV/Vis in Operando Mode
journal, June 2013

  • Patel, Manu U. M.; Demir-Cakan, Rezan; Morcrette, Mathieu
  • ChemSusChem, Vol. 6, Issue 7
  • DOI: 10.1002/cssc.201300142

Elemental Sulfur and Molybdenum Disulfide Composites for Li–S Batteries with Long Cycle Life and High-Rate Capability
journal, May 2016

  • Dirlam, Philip T.; Park, Jungjin; Simmonds, Adam G.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 21
  • DOI: 10.1021/acsami.6b03200

Layer-by-Layer Assembled C/S Cathode with Trace Binder for Li–S Battery Application
journal, November 2015

  • Wang, Qian; Yan, Na; Wang, Meiri
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 45
  • DOI: 10.1021/acsami.5b08887

Nanomaterials: Science and applications in the lithium–sulfur battery
journal, June 2015


Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium–sulfur batteries
journal, January 2016

  • Wang, Xiaolei; Li, Ge; Li, Jingde
  • Energy & Environmental Science, Vol. 9, Issue 8
  • DOI: 10.1039/C6EE00194G

Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries
journal, January 2014

  • Cuisinier, M.; Cabelguen, P. -E.; Adams, B. D.
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE00372A

Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes
journal, August 2000


Lithium Iodide as a Promising Electrolyte Additive for Lithium-Sulfur Batteries: Mechanisms of Performance Enhancement
journal, November 2014


Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science
journal, November 2008


Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

Application of gelatin as a binder for the sulfur cathode in lithium–sulfur batteries
journal, October 2008


Highly Reversible Lithium/Dissolved Polysulfide Batteries with Carbon Nanotube Electrodes
journal, May 2013

  • Fu, Yongzhu; Su, Yu-Sheng; Manthiram, Arumugam
  • Angewandte Chemie, Vol. 125, Issue 27, p. 7068-7073
  • DOI: 10.1002/ange.201301250

Binder Based on Polyelectrolyte for High Capacity Density Lithium/Sulfur Battery
journal, January 2012

  • Zhang, Sheng S.
  • Journal of The Electrochemical Society, Vol. 159, Issue 8
  • DOI: 10.1149/2.039208jes

Enhanced Li–S Batteries Using Amine-Functionalized Carbon Nanotubes in the Cathode
journal, December 2015


A New Type of Multifunctional Polar Binder: Toward Practical Application of High Energy Lithium Sulfur Batteries
journal, February 2017


Hierarchical pore-in-pore and wire-in-wire catalysts for rechargeable Zn– and Li–air batteries with ultra-long cycle life and high cell efficiency
journal, January 2015

  • Li, Longjun; Liu, Chao; He, Guang
  • Energy & Environmental Science, Vol. 8, Issue 11
  • DOI: 10.1039/C5EE02616D

Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes
journal, September 2016


Attainable Gravimetric and Volumetric Energy Density of Li–S and Li Ion Battery Cells with Solid Separator-Protected Li Metal Anodes
journal, October 2015


Polysulfide-Blocking Microporous Polymer Membrane Tailored for Hybrid Li-Sulfur Flow Batteries
journal, August 2015


Interpretation of small-angle x-ray and neutron scattering data for perfluorosulfonated ionomer membranes
journal, August 1986


Porosity Blocking in Highly Porous Carbon Black by PVdF Binder and Its Implications for the Li–S System
journal, October 2014

  • Lacey, Matthew J.; Jeschull, Fabian; Edström, Kristina
  • The Journal of Physical Chemistry C, Vol. 118, Issue 45
  • DOI: 10.1021/jp508137m

Poly(ionic liquid)s: An update
journal, July 2013


Ionic-Liquid-Based Polymer Electrolytes for Battery Applications
journal, November 2015

  • Osada, Irene; de Vries, Henrik; Scrosati, Bruno
  • Angewandte Chemie International Edition, Vol. 55, Issue 2
  • DOI: 10.1002/anie.201504971

X-ray spectroscopy as a probe for lithium polysulfide radicals
journal, January 2015

  • Pascal, Tod A.; Pemmaraju, C. D.; Prendergast, David
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 12
  • DOI: 10.1039/C4CP05316H

On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries
journal, January 2009

  • Aurbach, Doron; Pollak, Elad; Elazari, Ran
  • Journal of The Electrochemical Society, Vol. 156, Issue 8, p. A694-A702
  • DOI: 10.1149/1.3148721

Effect of Sulfur Impurities on Li∕TiS[sub 2] Cells
journal, January 1981

  • Rao, B. M. L.
  • Journal of The Electrochemical Society, Vol. 128, Issue 5
  • DOI: 10.1149/1.2127579

Critical Link between Materials Chemistry and Cell-Level Design for High Energy Density and Low Cost Lithium-Sulfur Transportation Battery
journal, January 2015

  • Eroglu, Damla; Zavadil, Kevin R.; Gallagher, Kevin G.
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0611506jes

Mechanism and Kinetics of Li 2 S Precipitation in Lithium-Sulfur Batteries
journal, August 2015

  • Fan, Frank Y.; Carter, W. Craig; Chiang, Yet-Ming
  • Advanced Materials, Vol. 27, Issue 35
  • DOI: 10.1002/adma.201501559

A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic−Organic Self-Assembly
journal, September 2006

  • Meng, Yan; Gu, Dong; Zhang, Fuqiang
  • Chemistry of Materials, Vol. 18, Issue 18
  • DOI: 10.1021/cm060921u

Beamline 10.3.2 at ALS: a hard X-ray microprobe for environmental and materials sciences
journal, April 2004

  • Marcus, Matthew A.; MacDowell, Alastair A.; Celestre, Richard
  • Journal of Synchrotron Radiation, Vol. 11, Issue 3
  • DOI: 10.1107/S0909049504005837

Elemental-Sulfur-Mediated Facile Synthesis of a Covalent Triazine Framework for High-Performance Lithium-Sulfur Batteries
journal, January 2016

  • Talapaneni, Siddulu Naidu; Hwang, Tae Hoon; Je, Sang Hyun
  • Angewandte Chemie International Edition, Vol. 55, Issue 9
  • DOI: 10.1002/anie.201511553

Low-Cost Higher Loading of a Sulfur Cathode
journal, December 2015

  • Zhou, Weidong; Guo, Bingkun; Gao, Hongcai
  • Advanced Energy Materials, Vol. 6, Issue 5
  • DOI: 10.1002/aenm.201502059

Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder
journal, January 2013

  • Seh, Zhi Wei; Zhang, Qianfan; Li, Weiyang
  • Chemical Science, Vol. 4, Issue 9
  • DOI: 10.1039/c3sc51476e

Three-Dimensional Growth of Li 2 S in Lithium–Sulfur Batteries Promoted by a Redox Mediator
journal, December 2015


On the dispersion of lithium-sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders
journal, August 2016


Rational Sulfur Cathode Design for Lithium–Sulfur Batteries: Sulfur-Embedded Benzoxazine Polymers
journal, August 2016


Observation of cluster formation in an ionomer
journal, December 1987

  • Galambos, A. F.; Stockton, W. B.; Koberstein, J. T.
  • Macromolecules, Vol. 20, Issue 12
  • DOI: 10.1021/ma00178a028

Recent Advances in Electrolytes for Lithium-Sulfur Batteries
journal, April 2015

  • Zhang, Shiguo; Ueno, Kazuhide; Dokko, Kaoru
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201500117

Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy
journal, September 2013

  • Cuisinier, Marine; Cabelguen, Pierre-Etienne; Evers, Scott
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 19
  • DOI: 10.1021/jz401763d

Thermodynamic origins of the solvent-dependent stability of lithium polysulfides from first principles
journal, January 2017

  • Pascal, Tod A.; Wujcik, Kevin H.; Wang, Dunyang Rita
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 2
  • DOI: 10.1039/C6CP06889H

A Graphene-Pure-Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium-Sulfur Batteries
journal, November 2013


Carbonyl- β -Cyclodextrin as a Novel Binder for Sulfur Composite Cathodes in Rechargeable Lithium Batteries
journal, October 2012

  • Wang, Jiulin; Yao, Zhendong; Monroe, Charles W.
  • Advanced Functional Materials, Vol. 23, Issue 9
  • DOI: 10.1002/adfm.201201847

Metal–organic framework-based separator for lithium–sulfur batteries
journal, June 2016


Physical Structure of Ionomers
journal, April 1968

  • Longworth, R.; Vaughan, Daniel J.
  • Nature, Vol. 218, Issue 5136
  • DOI: 10.1038/218085a0

X-ray Absorption Spectra of Dissolved Polysulfides in Lithium–Sulfur Batteries from First-Principles
journal, April 2014

  • Pascal, Tod A.; Wujcik, Kevin H.; Velasco-Velez, Juan
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 9
  • DOI: 10.1021/jz500260s

Enhanced Electrochemical Kinetics on Conductive Polar Mediators for Lithium-Sulfur Batteries
journal, October 2016


Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction
journal, May 2017


Energy Storage Materials Synthesized from Ionic Liquids
journal, October 2014

  • Gebresilassie Eshetu, Gebrekidan; Armand, Michel; Scrosati, Bruno
  • Angewandte Chemie International Edition, Vol. 53, Issue 49
  • DOI: 10.1002/anie.201405910

Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li–S battery
journal, January 2017

  • Liu, Jie; Galpaya, Dilini G. D.; Yan, Lijing
  • Energy & Environmental Science, Vol. 10, Issue 3
  • DOI: 10.1039/C6EE03033E

Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries
journal, January 2013

  • Zheng, Jianming; Gu, Meng; Chen, Honghao
  • Journal of Materials Chemistry A, Vol. 1, Issue 29
  • DOI: 10.1039/c3ta11553d

Achieving high capacity retention in lithium-sulfur batteries with an aqueous binder
journal, November 2016


Simultaneous Conduction of Electronic Charge and Lithium Ions in Block Copolymers
journal, January 2012

  • Patel, Shrayesh N.; Javier, Anna E.; Stone, Greg M.
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn2045664

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Redox-Active Supramolecular Polymer Binders for Lithium–Sulfur Batteries That Adapt Their Transport Properties in Operando
journal, October 2016


Moving to a Solid-State Configuration: A Valid Approach to Making Lithium-Sulfur Batteries Viable for Practical Applications
journal, September 2010

  • Hassoun, Jusef; Scrosati, Bruno
  • Advanced Materials, Vol. 22, Issue 45, p. 5198-5201
  • DOI: 10.1002/adma.201002584

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

The use of elemental sulfur as an alternative feedstock for polymeric materials
journal, April 2013

  • Chung, Woo Jin; Griebel, Jared J.; Kim, Eui Tae
  • Nature Chemistry, Vol. 5, Issue 6
  • DOI: 10.1038/nchem.1624

Sparingly Solvating Electrolytes for High Energy Density Lithium–Sulfur Batteries
journal, August 2016


    Works referencing / citing this record:

    Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application
    journal, June 2018


    Research Progress of the Solid State Lithium-Sulfur Batteries
    journal, October 2019


    Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application
    journal, June 2018


    Research Progress of the Solid State Lithium-Sulfur Batteries
    journal, October 2019


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.