skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland

ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [1];  [4]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7]
  1. Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Los Alamos NM USA
  2. Center for Computing Research, Sandia National Laboratories, Albuquerque NM USA
  3. Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt MD USA
  4. Cryospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt MD USA
  5. Department of Computer Science, University of Montana, Missoula MT USA
  6. Institute for Geophysics, University of Texas at Austin, Austin TX USA, Department of Geological Sciences, University of Texas at Austin, Austin TX USA
  7. Department of Geography, University of Zürich, Zürich Switzerland
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21); USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23); USDOE National Nuclear Security Administration (NNSA); National Science Foundation (NSF); National Aeronautics and Space Administration (NASA)
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1417227; OSTI ID: 1417820; OSTI ID: 1421629
Report Number(s):
LA-UR-17-28283; SAND2018-0455J
Journal ID: ISSN 0094-8276
Grant/Contract Number:  
AC52-06NA25396; NA0003525
Resource Type:
Published Article
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Name: Geophysical Research Letters; Journal ID: ISSN 0094-8276
American Geophysical Union
Country of Publication:
United States
58 GEOSCIENCES; Earth Sciences; Mathematics

Citation Formats

Hoffman, Matthew J., Perego, Mauro, Andrews, Lauren C., Price, Stephen F., Neumann, Thomas A., Johnson, Jesse V., Catania, Ginny, and Lüthi, Martin P. Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland. United States: N. p., 2018. Web. doi:10.1002/2017GL075659.
Hoffman, Matthew J., Perego, Mauro, Andrews, Lauren C., Price, Stephen F., Neumann, Thomas A., Johnson, Jesse V., Catania, Ginny, & Lüthi, Martin P. Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland. United States. doi:10.1002/2017GL075659.
Hoffman, Matthew J., Perego, Mauro, Andrews, Lauren C., Price, Stephen F., Neumann, Thomas A., Johnson, Jesse V., Catania, Ginny, and Lüthi, Martin P. Wed . "Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland". United States. doi:10.1002/2017GL075659.
title = {Widespread Moulin Formation During Supraglacial Lake Drainages in Greenland},
author = {Hoffman, Matthew J. and Perego, Mauro and Andrews, Lauren C. and Price, Stephen F. and Neumann, Thomas A. and Johnson, Jesse V. and Catania, Ginny and Lüthi, Martin P.},
abstractNote = {},
doi = {10.1002/2017GL075659},
journal = {Geophysical Research Letters},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {1}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1002/2017GL075659

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Examples of moulins within the study area. a) WorldView satellite photo of moulin formed within supraglacial lake basin. The former lakeshore can be seen as an oval “bathtub ring” in the center of the photograph. Upthrusted blocks of ice can be seen around the primary moulin in themore » center of the image (indicated with an arrow), and long fractures extend out of the lake basin to the left, the right, and the lower right. A crevasse field covers the lower left of the image but does not intersect the lake basin. This lake is located at 69.45 °N 49.63° W. b) Aerial photograph of streams terminating in moulins (black arrows) without any nearby visible fractures or lakes. The flow direction of the major streams is from the bottom of the photo toward the top. The dashed black lines highlight incised stream reaches that no longer contain water, indicating the streams were formerly through-flowing prior to the formation of the moulin directly upstream. The large blue stream in the foreground is estimated to be 10 m wide. c) Aerial photograph of small stream that appears to be recently bisected by a fracture that caused an offset (black arrow) in the stream trace. The channel on the left appears to be dry. This is likely an early stage in the moulin formation process as there is no obvious moulin visible from above, yet the water from the stream section of the right disappears at the fracture. The stream section on the left is estimated to be 1 m wide.« less

Save / Share:

Works referenced in this record:

A decadal investigation of supraglacial lakes in West Greenland using a fully automatic detection and tracking algorithm
journal, August 2012

Modeling moulin distribution on Sermeq Avannarleq glacier using ASTER and WorldView imagery and fuzzy set theory
journal, September 2011

Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling
journal, January 2009

  • Ettema, Janneke; van den Broeke, Michiel R.; van Meijgaard, Erik
  • Geophysical Research Letters, Vol. 36, Issue 12
  • DOI: 10.1029/2009GL038110

Supraglacial lakes on the Greenland ice sheet advance inland under warming climate
journal, December 2014

  • Leeson, A. A.; Shepherd, A.; Briggs, K.
  • Nature Climate Change, Vol. 5, Issue 1
  • DOI: 10.1038/nclimate2463

Greenland flow variability from ice-sheet-wide velocity mapping
journal, January 2010

Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow
journal, June 2002

Modeling of subglacial hydrological development following rapid supraglacial lake drainage: MODELING LAKE DRAINAGE HYDROLOGY
journal, June 2015

  • Dow, C. F.; Kulessa, B.; Rutt, I. C.
  • Journal of Geophysical Research: Earth Surface, Vol. 120, Issue 6
  • DOI: 10.1002/2014JF003333

A Fully Automated Supraglacial lake area and volume Tracking (“FAST”) algorithm: Development and application using MODIS imagery of West Greenland
journal, July 2017

  • Williamson, Andrew G.; Arnold, Neil S.; Banwell, Alison F.
  • Remote Sensing of Environment, Vol. 196
  • DOI: 10.1016/j.rse.2017.04.032

Time-dependent basal stress conditions beneath Black Rapids Glacier, Alaska, USA, inferred from measurements of ice deformation and surface motion
journal, January 2006

  • Amundson, Jason M.; Truffer, Martin; Lüthi, Martin P.
  • Journal of Glaciology, Vol. 52, Issue 178
  • DOI: 10.3189/172756506781828593

Modeling supraglacial water routing and lake filling on the Greenland Ice Sheet: MODELING GREENLAND SUPRAGLACIAL LAKES
journal, October 2012

  • Banwell, Alison F.; Arnold, Neil S.; Willis, Ian C.
  • Journal of Geophysical Research: Earth Surface, Vol. 117, Issue F4
  • DOI: 10.1029/2012JF002393

Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model
journal, January 2012

The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets
journal, January 2014

Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland
journal, January 2015

  • Clason, C. C.; Mair, D. W. F.; Nienow, P. W.
  • The Cryosphere, Vol. 9, Issue 1
  • DOI: 10.5194/tc-9-123-2015

Glacier crevasses: Observations, models, and mass balance implications: Glacier Crevasses
journal, February 2016

  • Colgan, William; Rajaram, Harihar; Abdalati, Waleed
  • Reviews of Geophysics, Vol. 54, Issue 1
  • DOI: 10.1002/2015RG000504

A tutorial on the use of control methods in ice-sheet modeling
journal, January 1993

High-resolution bed topography mapping of Russell Glacier, Greenland, inferred from Operation IceBridge data
journal, January 2013

  • Morlighem, M.; Rignot, E.; Mouginot, J.
  • Journal of Glaciology, Vol. 59, Issue 218
  • DOI: 10.3189/2013JoG12J235

Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage
journal, April 2008

Brief Communication "Expansion of meltwater lakes on the Greenland Ice Sheet"
journal, January 2013

  • Howat, I. M.; de la Peña, S.; van Angelen, J. H.
  • The Cryosphere, Vol. 7, Issue 1
  • DOI: 10.5194/tc-7-201-2013

A mass conservation approach for mapping glacier ice thickness: BALANCE THICKNESS
journal, October 2011

  • Morlighem, M.; Rignot, E.; Seroussi, H.
  • Geophysical Research Letters, Vol. 38, Issue 19
  • DOI: 10.1029/2011GL048659

Moulin density controls drainage development beneath the Greenland ice sheet: Moulin Density and Subglacial Drainage
journal, December 2016

  • Banwell, Alison; Hewitt, Ian; Willis, Ian
  • Journal of Geophysical Research: Earth Surface, Vol. 121, Issue 12
  • DOI: 10.1002/2015JF003801

Albany/FELIX : a parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis
journal, January 2015

  • Tezaur, I. K.; Perego, M.; Salinger, A. G.
  • Geoscientific Model Development, Vol. 8, Issue 4
  • DOI: 10.5194/gmd-8-1197-2015

Meltwater influences on deep stick-slip icequakes near the base of the Greenland Ice Sheet: DEEP STICK-SLIP ICEQUAKES OF THE GRIS
journal, February 2016

  • Roeoesli, Claudia; Helmstetter, Agnes; Walter, Fabian
  • Journal of Geophysical Research: Earth Surface, Vol. 121, Issue 2
  • DOI: 10.1002/2015JF003601

Constraints on the lake volume required for hydro-fracture through ice sheets
journal, January 2009

  • Krawczynski, M. J.; Behn, M. D.; Das, S. B.
  • Geophysical Research Letters, Vol. 36, Issue 10
  • DOI: 10.1029/2008GL036765

Basal resistance for three of the largest Greenland outlet glaciers: BASAL RESISTANCE OF GREENLAND GLACIERS
journal, January 2016

  • Shapero, Daniel R.; Joughin, Ian R.; Poinar, Kristin
  • Journal of Geophysical Research: Earth Surface, Vol. 121, Issue 1
  • DOI: 10.1002/2015JF003643

Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier
journal, May 2010

  • Bartholomew, Ian; Nienow, Peter; Mair, Douglas
  • Nature Geoscience, Vol. 3, Issue 6
  • DOI: 10.1038/ngeo863

Sustained high basal motion of the Greenland ice sheet revealed by borehole deformation
journal, January 2014

  • Ryser, Claudia; Lüthi, Martin P.; Andrews, Lauren C.
  • Journal of Glaciology, Vol. 60, Issue 222
  • DOI: 10.3189/2014JoG13J196

Northeast sector of the Greenland Ice Sheet to undergo the greatest inland expansion of supraglacial lakes during the 21st century: Expansion of Surface Lakes on the GrIS
journal, September 2016

  • Ignéczi, Ádám; Sole, Andrew J.; Livingstone, Stephen J.
  • Geophysical Research Letters, Vol. 43, Issue 18
  • DOI: 10.1002/2016GL070338

Assessing the summer water budget of a moulin basin in the Sermeq Avannarleq ablation region, Greenland ice sheet
journal, January 2011

Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers
journal, January 2007

The effect of discrete recharge by moulins and heterogeneity in flow-path efficiency at glacier beds on subglacial hydrology
journal, January 2012

  • Gulley, J. D.; Grabiec, M.; Martin, J. B.
  • Journal of Glaciology, Vol. 58, Issue 211
  • DOI: 10.3189/2012JoG11J189

Deformation of the Ross Ice Shelf, Antarctica
journal, January 1964

An increase in crevasse extent, West Greenland: Hydrologic implications: INCREASED CREVASSE EXTENT WEST GREENLAND
journal, September 2011

  • Colgan, William; Steffen, Konrad; McLamb, W. Scott
  • Geophysical Research Letters, Vol. 38, Issue 18
  • DOI: 10.1029/2011GL048491

Optimal initial conditions for coupling ice sheet models to Earth system models: PEREGO ET AL.
journal, September 2014

  • Perego, Mauro; Price, Stephen; Stadler, Georg
  • Journal of Geophysical Research: Earth Surface, Vol. 119, Issue 9
  • DOI: 10.1002/2014JF003181

A model for turbulent hydraulic fracture and application to crack propagation at glacier beds
journal, January 2010

  • Tsai, Victor C.; Rice, James R.
  • Journal of Geophysical Research, Vol. 115, Issue F3
  • DOI: 10.1029/2009JF001474

Persistent englacial drainage features in the Greenland Ice Sheet: PERSISTENT MOULINS IN GREENLAND
journal, January 2010

  • Catania, G. A.; Neumann, T. A.
  • Geophysical Research Letters, Vol. 37, Issue 2
  • DOI: 10.1029/2009GL041108

Limits to future expansion of surface-melt-enhanced ice flow into the interior of western Greenland: Limits to surface-melt-enhanced ice flow
journal, March 2015

  • Poinar, Kristin; Joughin, Ian; Das, Sarah B.
  • Geophysical Research Letters, Vol. 42, Issue 6
  • DOI: 10.1002/2015GL063192

Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet
journal, January 2015

  • Smith, Laurence C.; Chu, Vena W.; Yang, Kang
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 4
  • DOI: 10.1073/pnas.1413024112

Relating the occurrence of crevasses to surface strain rates
journal, January 1993

Investigating changes in basal conditions of Variegated Glacier prior to and during its 1982–1983 surge
journal, January 2011

  • Jay-Allemand, M.; Gillet-Chaulet, F.; Gagliardini, O.
  • The Cryosphere, Vol. 5, Issue 3
  • DOI: 10.5194/tc-5-659-2011

Dye tracing a jökulhlaup: II. Testing a jökulhlaup model against flow speeds inferred from measurements
journal, January 2009

The impact of jökulhlaups on basal sliding observed by SAR interferometry on Vatnajökull, Iceland
journal, January 2007

  • Magnússon, Eyjólfur; Rott, Helmut; Björnsson, Helgi
  • Journal of Glaciology, Vol. 53, Issue 181
  • DOI: 10.3189/172756507782202810

Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and model-based analysis: JAKOBSHAVN ISBRAE, OBSERVATION/ANALYSIS
journal, May 2012

  • Joughin, Ian; Smith, Ben E.; Howat, Ian M.
  • Journal of Geophysical Research: Earth Surface, Vol. 117, Issue F2
  • DOI: 10.1029/2011JF002110

Seismicity on the western Greenland Ice Sheet: Surface fracture in the vicinity of active moulins: Seismicity Near Moulins, W Greenland
journal, June 2015

  • Carmichael, Joshua D.; Joughin, Ian; Behn, Mark D.
  • Journal of Geophysical Research: Earth Surface, Vol. 120, Issue 6
  • DOI: 10.1002/2014JF003398

Greenland supraglacial lake drainages triggered by hydrologically induced basal slip
journal, June 2015

  • Stevens, Laura A.; Behn, Mark D.; McGuire, Jeffrey J.
  • Nature, Vol. 522, Issue 7554
  • DOI: 10.1038/nature14480

Englacial latent-heat transfer has limited influence on seaward ice flux in western Greenland
journal, October 2016

  • Poinar, Kristin; Joughin, Ian; Lenaerts, Jan T. M.
  • Journal of Glaciology, Vol. 63, Issue 237
  • DOI: 10.1017/jog.2016.103

A numerical study of hydrologically driven glacier dynamics and subglacial flooding
journal, July 2010

  • Pimentel, Sam; Flowers, Gwenn E.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 467, Issue 2126
  • DOI: 10.1098/rspa.2010.0211

Committed retreat of Smith, Pope, and Kohler Glaciers over the next 30 years inferred by transient model calibration
journal, January 2015

A stabilized finite element method for calculating balance velocities in ice sheets
journal, January 2015

Quantifying supraglacial meltwater pathways in the Paakitsoq region, West Greenland
journal, March 2017

  • Koziol, Conrad; Arnold, Neil; Pope, Allen
  • Journal of Glaciology, Vol. 63, Issue 239
  • DOI: 10.1017/jog.2017.5

Ice tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland Ice Sheet
journal, January 2013

Distributed modeling of ablation (1996–2011) and climate sensitivity on the glaciers of Taylor Valley, Antarctica
journal, February 2016

  • Hoffman, Matthew J.; Fountain, Andrew G.; Liston, Glen E.
  • Journal of Glaciology, Vol. 62, Issue 232
  • DOI: 10.1017/jog.2015.2

Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming
journal, January 2015

Thick sediments beneath Greenland’s ablation zone and their potential role in future ice sheet dynamics
journal, June 2014

  • Walter, Fabian; Chaput, Julien; Lüthi, Martin P.
  • Geology, Vol. 42, Issue 6
  • DOI: 10.1130/G35492.1

Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet
journal, October 2014

  • Andrews, Lauren C.; Catania, Ginny A.; Hoffman, Matthew J.
  • Nature, Vol. 514, Issue 7520
  • DOI: 10.1038/nature13796

Plastic bed beneath Hofsjökull Ice Cap, central Iceland, and the sensitivity of ice flow to surface meltwater flux
journal, February 2016

  • Minchew, Brent; Simons, Mark; BjÖRnsson, Helgi
  • Journal of Glaciology, Vol. 62, Issue 231
  • DOI: 10.1017/jog.2016.26

Characterizing englacial drainage in the ablation zone of the Greenland ice sheet
journal, January 2008

  • Catania, Ginny A.; Neumann, Thomas A.; Price, Stephen F.
  • Journal of Glaciology, Vol. 54, Issue 187
  • DOI: 10.3189/002214308786570854

Changing basal conditions during the speed-up of Jakobshavn Isbræ, Greenland
journal, January 2013

A decade (2002–2012) of supraglacial lake volume estimates across Russell Glacier, West Greenland
journal, January 2014

  • Fitzpatrick, A. A. W.; Hubbard, A. L.; Box, J. E.
  • The Cryosphere, Vol. 8, Issue 1
  • DOI: 10.5194/tc-8-107-2014

Assimilation of surface velocities acquired between 1996 and 2010 to constrain the form of the basal friction law under Pine Island Glacier: THE FRICTION LAW UNDER PIG
journal, October 2016

  • Gillet-Chaulet, F.; Durand, G.; Gagliardini, O.
  • Geophysical Research Letters, Vol. 43, Issue 19
  • DOI: 10.1002/2016GL069937

Caterpillar-like ice motion in the ablation zone of the Greenland ice sheet
journal, October 2014

  • Ryser, C.; Lüthi, M. P.; Andrews, L. C.
  • Journal of Geophysical Research: Earth Surface, Vol. 119, Issue 10
  • DOI: 10.1002/2013JF003067

High-resolution modelling of the seasonal evolution of surface water storage on the Greenland Ice Sheet
journal, January 2014

Reconstruction of basal properties in ice sheets using iterative inverse methods
journal, January 2012

  • Habermann, Marijke; Maxwell, David; Truffer, Martin
  • Journal of Glaciology, Vol. 58, Issue 210
  • DOI: 10.3189/2012JoG11J168

Basal shear stress of the Ross ice streams from control method inversions: SHEAR STRESS OF THE ROSS ICE STREAMS
journal, September 2004

  • Joughin, Ian; MacAyeal, Douglas R.; Tulaczyk, Slawek
  • Journal of Geophysical Research: Solid Earth, Vol. 109, Issue B9
  • DOI: 10.1029/2003JB002960

Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet
journal, July 2013

    Works referencing / citing this record:

    Over-winter persistence of supraglacial lakes on the Greenland Ice Sheet: results and insights from a new model
    journal, March 2020

    • Law, Robert; Arnold, Neil; Benedek, Corinne
    • Journal of Glaciology
    • DOI: 10.1017/jog.2020.7

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.