DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries

Abstract

Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electrochemical flow cell. To avoid battery self-discharge, the anolyte and catholyte solutions must be separated by a membrane in the flow cell. This membrane prevents crossover of the redox active molecules, while simultaneously allowing facile transport of charge-balancing ions. A key unmet challenge for the field is the design of redox-active molecule/membrane pairs that enable effective electrolyte separation while maintaining optimal battery properties. Herein, we demonstrate the development of oligomeric catholytes based on tris(dialkylamino)cyclopropenium (CP) salts that are specifically tailored for pairing with size-exclusion membranes composed of polymers of intrinsic microporosity (PIMs). Systematic studies were conducted to evaluate the impact of oligomer size/structure on properties that are crucial for flow battery performance, including cycling stability, charge capacity, solubility, electron transfer kinetics, and crossover rates. These studies have led to the identification of a CP-derived tetramer in which these properties are all comparable, or significantly improved, relative to the monomeric counterpart. Finally, a proof-of-concept flow battery is demonstrated by pairingmore » this tetrameric catholyte with a PIM membrane. After 6 days of cycling, no crossover is detected, demonstrating the promise of this approach. Finally, these studies provide a template for the future design of other redox-active oligomers for this application.« less

Authors:
 [1];  [2];  [3];  [1]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemistry; Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR)
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR); Univ. of Utah, Salt Lake City, UT (United States). Dept. of Chemistry
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1417219
Alternate Identifier(s):
OSTI ID: 1433121; OSTI ID: 1508601
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
ACS Central Science
Additional Journal Information:
Journal Volume: 4; Journal Issue: 2; Journal ID: ISSN 2374-7943
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE

Citation Formats

Hendriks, Koen H., Robinson, Sophia G., Braten, Miles N., Sevov, Christo S., Helms, Brett A., Sigman, Matthew S., Minteer, Shelley D., and Sanford, Melanie S. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries. United States: N. p., 2018. Web. doi:10.1021/acscentsci.7b00544.
Hendriks, Koen H., Robinson, Sophia G., Braten, Miles N., Sevov, Christo S., Helms, Brett A., Sigman, Matthew S., Minteer, Shelley D., & Sanford, Melanie S. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries. United States. https://doi.org/10.1021/acscentsci.7b00544
Hendriks, Koen H., Robinson, Sophia G., Braten, Miles N., Sevov, Christo S., Helms, Brett A., Sigman, Matthew S., Minteer, Shelley D., and Sanford, Melanie S. Wed . "High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries". United States. https://doi.org/10.1021/acscentsci.7b00544.
@article{osti_1417219,
title = {High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries},
author = {Hendriks, Koen H. and Robinson, Sophia G. and Braten, Miles N. and Sevov, Christo S. and Helms, Brett A. and Sigman, Matthew S. and Minteer, Shelley D. and Sanford, Melanie S.},
abstractNote = {Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electrochemical flow cell. To avoid battery self-discharge, the anolyte and catholyte solutions must be separated by a membrane in the flow cell. This membrane prevents crossover of the redox active molecules, while simultaneously allowing facile transport of charge-balancing ions. A key unmet challenge for the field is the design of redox-active molecule/membrane pairs that enable effective electrolyte separation while maintaining optimal battery properties. Herein, we demonstrate the development of oligomeric catholytes based on tris(dialkylamino)cyclopropenium (CP) salts that are specifically tailored for pairing with size-exclusion membranes composed of polymers of intrinsic microporosity (PIMs). Systematic studies were conducted to evaluate the impact of oligomer size/structure on properties that are crucial for flow battery performance, including cycling stability, charge capacity, solubility, electron transfer kinetics, and crossover rates. These studies have led to the identification of a CP-derived tetramer in which these properties are all comparable, or significantly improved, relative to the monomeric counterpart. Finally, a proof-of-concept flow battery is demonstrated by pairing this tetrameric catholyte with a PIM membrane. After 6 days of cycling, no crossover is detected, demonstrating the promise of this approach. Finally, these studies provide a template for the future design of other redox-active oligomers for this application.},
doi = {10.1021/acscentsci.7b00544},
journal = {ACS Central Science},
number = 2,
volume = 4,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1021/acscentsci.7b00544

Citation Metrics:
Cited by: 112 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Schematic representation of the operation of a microporous membrane in a flow battery using redox-active oligomers.

Save / Share:

Works referenced in this record:

Flow Batteries: Current Status and Trends
journal, September 2015

  • Soloveichik, Grigorii L.
  • Chemical Reviews, Vol. 115, Issue 20
  • DOI: 10.1021/cr500720t

Redox-Flow Batteries: From Metals to Organic Redox-Active Materials
journal, November 2016

  • Winsberg, Jan; Hagemann, Tino; Janoschka, Tobias
  • Angewandte Chemie International Edition, Vol. 56, Issue 3
  • DOI: 10.1002/anie.201604925

Redox Flow Batteries
journal, May 2017


A High-Current, Stable Nonaqueous Organic Redox Flow Battery
journal, September 2016


High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries
journal, January 2016

  • Milshtein, Jarrod D.; Kaur, Aman Preet; Casselman, Matthew D.
  • Energy & Environmental Science, Vol. 9, Issue 11
  • DOI: 10.1039/C6EE02027E

Recent developments in organic redox flow batteries: A critical review
journal, August 2017


A high-performance all-metallocene-based, non-aqueous redox flow battery
journal, January 2017

  • Ding, Yu; Zhao, Yu; Li, Yutao
  • Energy & Environmental Science, Vol. 10, Issue 2
  • DOI: 10.1039/C6EE02057G

The Chemistry of Redox-Flow Batteries
journal, June 2015

  • Noack, Jens; Roznyatovskaya, Nataliya; Herr, Tatjana
  • Angewandte Chemie International Edition, Vol. 54, Issue 34
  • DOI: 10.1002/anie.201410823

A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention
journal, February 2017


Advanced Redox-Flow Batteries: A Perspective
journal, September 2015

  • Perry, Mike L.; Weber, Adam Z.
  • Journal of The Electrochemical Society, Vol. 163, Issue 1
  • DOI: 10.1149/2.0101601jes

A metal-free organic–inorganic aqueous flow battery
journal, January 2014

  • Huskinson, Brian; Marshak, Michael P.; Suh, Changwon
  • Nature, Vol. 505, Issue 7482, p. 195-198
  • DOI: 10.1038/nature12909

A redox-flow battery with an alloxazine-based organic electrolyte
journal, July 2016


An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System
journal, October 2016

  • Janoschka, Tobias; Martin, Norbert; Hager, Martin D.
  • Angewandte Chemie International Edition, Vol. 55, Issue 46
  • DOI: 10.1002/anie.201606472

Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage
journal, January 2017

  • Hu, Bo; DeBruler, Camden; Rhodes, Zayn
  • Journal of the American Chemical Society, Vol. 139, Issue 3
  • DOI: 10.1021/jacs.6b10984

Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects: All-vanadium redox flow battery for energy storage
journal, May 2011

  • Kear, Gareth; Shah, Akeel A.; Walsh, Frank C.
  • International Journal of Energy Research, Vol. 36, Issue 11
  • DOI: 10.1002/er.1863

Redox flow batteries go organic
journal, February 2016


The rise of organic electrode materials for energy storage
journal, January 2016

  • Schon, Tyler B.; McAllister, Bryony T.; Li, Peng-Fei
  • Chemical Society Reviews, Vol. 45, Issue 22
  • DOI: 10.1039/C6CS00173D

Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications
journal, February 2017

  • Sevov, Christo S.; Hickey, David P.; Cook, Monique E.
  • Journal of the American Chemical Society, Vol. 139, Issue 8
  • DOI: 10.1021/jacs.7b00147

Cyclopropenium Salts as Cyclable, High-Potential Catholytes in Nonaqueous Media
journal, November 2016

  • Sevov, Christo S.; Samaroo, Sharmila K.; Sanford, Melanie S.
  • Advanced Energy Materials, Vol. 7, Issue 5
  • DOI: 10.1002/aenm.201602027

Annulated Dialkoxybenzenes as Catholyte Materials for Non-aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution
journal, July 2017

  • Zhang, Jingjing; Yang, Zheng; Shkrob, Ilya A.
  • Advanced Energy Materials, Vol. 7, Issue 21
  • DOI: 10.1002/aenm.201701272

A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective
journal, January 2013

  • Shin, Sung-Hee; Yun, Sung-Hyun; Moon, Seung-Hyeon
  • RSC Advances, Vol. 3, Issue 24, p. 9095-9116
  • DOI: 10.1039/c3ra00115f

Recent Progress in Redox Flow Battery Research and Development
journal, September 2012

  • Wang, Wei; Luo, Qingtao; Li, Bin
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 970-986
  • DOI: 10.1002/adfm.201200694

An aqueous, polymer-based redox-flow battery using non-corrosive, safe and low-cost materials
journal, October 2015

  • Janoschka, Tobias; Martin, Norbert; Martin, Udo
  • Nature, Vol. 527, Issue 7576, p. 78-81
  • DOI: 10.1038/nature15746

Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents
journal, October 2014

  • Nagarjuna, Gavvalapalli; Hui, Jingshu; Cheng, Kevin J.
  • Journal of the American Chemical Society, Vol. 136, Issue 46, p. 16309-16316
  • DOI: 10.1021/ja508482e

Redox Active Polymers as Soluble Nanomaterials for Energy Storage
journal, September 2016

  • Burgess, Mark; Moore, Jeffrey S.; Rodríguez-López, Joaquín
  • Accounts of Chemical Research, Vol. 49, Issue 11
  • DOI: 10.1021/acs.accounts.6b00341

Redox Active Polymers for Non-Aqueous Redox Flow Batteries: Validation of the Size-Exclusion Approach
journal, January 2017

  • Montoto, Elena C.; Nagarjuna, Gavvalapalli; Moore, Jeffrey S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1511707jes

Poly(boron-dipyrromethene)—A Redox-Active Polymer Class for Polymer Redox-Flow Batteries
journal, May 2016


Impact of Backbone Tether Length and Structure on the Electrochemical Performance of Viologen Redox Active Polymers
journal, October 2016


Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries
journal, January 2017

  • Doris, Sean E.; Ward, Ashleigh L.; Baskin, Artem
  • Angewandte Chemie International Edition, Vol. 56, Issue 6
  • DOI: 10.1002/anie.201610582

Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials
journal, January 2004

  • Budd, Peter M.; Ghanem, Bader S.; Makhseed, Saad
  • Chemical Communications, Issue 2
  • DOI: 10.1039/b311764b

Cost-driven materials selection criteria for redox flow battery electrolytes
journal, October 2016


Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
journal, January 2014

  • Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.
  • Energy & Environmental Science, Vol. 7, Issue 11, p. 3459-3477
  • DOI: 10.1039/C4EE02158D

Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

Polysulfide dissolution control: the common ion effect
journal, January 2013

  • Shin, Eon Sung; Kim, Keon; Oh, Si Hyoung
  • Chem. Commun., Vol. 49, Issue 20
  • DOI: 10.1039/C2CC36986A

4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries
journal, September 2016


Multielectron Cycling of a Low-Potential Anolyte in Alkali Metal Electrolytes for Nonaqueous Redox Flow Batteries
journal, September 2017


Recent Progress in Redox Flow Battery Research and Development
journal, September 2012

  • Wang, Wei; Luo, Qingtao; Li, Bin
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 970-986
  • DOI: 10.1002/adfm.201200694

Cyclopropenium Salts as Cyclable, High-Potential Catholytes in Nonaqueous Media
journal, November 2016

  • Sevov, Christo S.; Samaroo, Sharmila K.; Sanford, Melanie S.
  • Advanced Energy Materials, Vol. 7, Issue 5
  • DOI: 10.1002/aenm.201602027

Annulated Dialkoxybenzenes as Catholyte Materials for Non-aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution
journal, July 2017

  • Zhang, Jingjing; Yang, Zheng; Shkrob, Ilya A.
  • Advanced Energy Materials, Vol. 7, Issue 21
  • DOI: 10.1002/aenm.201701272

The Chemistry of Redox-Flow Batteries
journal, June 2015

  • Noack, Jens; Roznyatovskaya, Nataliya; Herr, Tatjana
  • Angewandte Chemie International Edition, Vol. 54, Issue 34
  • DOI: 10.1002/anie.201410823

An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System
journal, October 2016

  • Janoschka, Tobias; Martin, Norbert; Hager, Martin D.
  • Angewandte Chemie International Edition, Vol. 55, Issue 46
  • DOI: 10.1002/anie.201606472

Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries
journal, January 2017

  • Doris, Sean E.; Ward, Ashleigh L.; Baskin, Artem
  • Angewandte Chemie International Edition, Vol. 56, Issue 6
  • DOI: 10.1002/anie.201610582

Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries
journal, September 2016


Cost-driven materials selection criteria for redox flow battery electrolytes
journal, October 2016


Recent developments in organic redox flow batteries: A critical review
journal, August 2017


Redox Active Polymers as Soluble Nanomaterials for Energy Storage
journal, September 2016

  • Burgess, Mark; Moore, Jeffrey S.; Rodríguez-López, Joaquín
  • Accounts of Chemical Research, Vol. 49, Issue 11
  • DOI: 10.1021/acs.accounts.6b00341

Poly(boron-dipyrromethene)—A Redox-Active Polymer Class for Polymer Redox-Flow Batteries
journal, May 2016


Impact of Backbone Tether Length and Structure on the Electrochemical Performance of Viologen Redox Active Polymers
journal, October 2016


A High-Current, Stable Nonaqueous Organic Redox Flow Battery
journal, September 2016


Redox Flow Batteries
journal, May 2017


Multielectron Cycling of a Low-Potential Anolyte in Alkali Metal Electrolytes for Nonaqueous Redox Flow Batteries
journal, September 2017


Impact of Redox-Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Nonaqueous Solvents
journal, October 2014

  • Nagarjuna, Gavvalapalli; Hui, Jingshu; Cheng, Kevin J.
  • Journal of the American Chemical Society, Vol. 136, Issue 46, p. 16309-16316
  • DOI: 10.1021/ja508482e

A metal-free organic–inorganic aqueous flow battery
journal, January 2014

  • Huskinson, Brian; Marshak, Michael P.; Suh, Changwon
  • Nature, Vol. 505, Issue 7482, p. 195-198
  • DOI: 10.1038/nature12909

An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials
journal, June 2016

  • Janoschka, Tobias; Martin, Norbert; Martin, Udo
  • Nature, Vol. 534, Issue 7607
  • DOI: 10.1038/nature18909

Redox flow batteries go organic
journal, February 2016


A redox-flow battery with an alloxazine-based organic electrolyte
journal, July 2016


Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials
journal, January 2004

  • Budd, Peter M.; Ghanem, Bader S.; Makhseed, Saad
  • Chemical Communications, Issue 2
  • DOI: 10.1039/b311764b

Correction: The rise of organic electrode materials for energy storage
journal, January 2016

  • Schon, Tyler B.; McAllister, Bryony T.; Li, Peng-Fei
  • Chemical Society Reviews, Vol. 45, Issue 22
  • DOI: 10.1039/c6cs90070d

Advanced Redox-Flow Batteries: A Perspective
journal, September 2015

  • Perry, Mike L.; Weber, Adam Z.
  • Journal of The Electrochemical Society, Vol. 163, Issue 1
  • DOI: 10.1149/2.0101601jes

Redox Active Polymers for Non-Aqueous Redox Flow Batteries: Validation of the Size-Exclusion Approach
journal, January 2017

  • Montoto, Elena C.; Nagarjuna, Gavvalapalli; Moore, Jeffrey S.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1511707jes

Works referencing / citing this record:

Self-Assembly of Aminocyclopropenium Salts: En Route to Deltic Ionic Liquid Crystals
journal, April 2020

  • Litterscheidt, Juri; Bandar, Jeffrey S.; Ebert, Max
  • Angewandte Chemie International Edition
  • DOI: 10.1002/anie.202000824

Gradient-Distributed Metal-Organic Framework-Based Porous Membranes for Nonaqueous Redox Flow Batteries
journal, October 2018

  • Peng, Sangshan; Zhang, Leyuan; Zhang, Changkun
  • Advanced Energy Materials, Vol. 8, Issue 33
  • DOI: 10.1002/aenm.201802533

Crossover in Membranes for Aqueous Soluble Organic Redox Flow Batteries
journal, January 2019

  • Small, Leo J.; Pratt, Harry D.; Anderson, Travis M.
  • Journal of The Electrochemical Society, Vol. 166, Issue 12
  • DOI: 10.1149/2.0681912jes

Organic Functionalization of Polyoxovanadate–Alkoxide Clusters: Improving the Solubility of Multimetallic Charge Carriers for Nonaqueous Redox Flow Batteries
journal, November 2018

  • VanGelder, Lauren E.; Petel, Brittney E.; Nachtigall, Olaf
  • ChemSusChem, Vol. 11, Issue 23
  • DOI: 10.1002/cssc.201802029

Crosslinked colloids with cyclopropenium cations
journal, October 2018

  • Brucks, Spencer D.; Steinman, Noam Y.; Starr, Rachel L.
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 56, Issue 23
  • DOI: 10.1002/pola.29246

Pyridyl group design in viologens for anolyte materials in organic redox flow batteries
journal, January 2018

  • Chen, Chen; Zhang, Shun; Zhu, Yingzhong
  • RSC Advances, Vol. 8, Issue 34
  • DOI: 10.1039/c8ra02641f

Progress in the Design of Polyoxovanadate-Alkoxides as Charge Carriers for Nonaqueous Redox Flow Batteries
journal, March 2019


Iodine(III)-Mediated Electrochemical Trifluoroethoxylactonisation: Rational Reaction Optimisation and Prediction of Mediator Activity
journal, October 2018

  • Möckel, Robert; Babaoglu, Emre; Hilt, Gerhard
  • Chemistry - A European Journal, Vol. 24, Issue 59
  • DOI: 10.1002/chem.201804152

Self‐Assembly of Aminocyclopropenium Salts: En Route to Deltic Ionic Liquid Crystals
journal, April 2020

  • Litterscheidt, Juri; Bandar, Jeffrey S.; Ebert, Max
  • Angewandte Chemie, Vol. 132, Issue 26
  • DOI: 10.1002/ange.202000824

Preventing Crossover in Redox Flow Batteries through Active Material Oligomerization
journal, February 2018


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.