skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils

Abstract

Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers a route to both DC and AC magnetometry in diamond anvil cells under high pressures (>3 GPa). However, a serious challenge to realizing experiments has been the insertion of microwave radiation into the sample space without screening by the gasket material. We utilize designer anvils with lithographically deposited metallic microchannels on the diamond culet as a microwave antenna. We detected the spin resonance of an ensemble of microdiamonds under pressure and measured the pressure dependence of the zero field splitting parameters. Furthermore, these experiments enable the possibility for all-optical magnetic resonance experiments on nanoliter sample volumes at high pressures.

Authors:
ORCiD logo [1];  [1];  [2];  [1]; ORCiD logo [1];  [3];  [4];  [4];  [4];  [5];  [5];  [5];  [6]; ORCiD logo [1]
  1. Univ. of California, Davis, CA (United States)
  2. Iowa State Univ., Ames, IA (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  6. Univ. of Alabama at Birmingham, Birmingham, AL (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1417179
Alternate Identifier(s):
OSTI ID: 1410575; OSTI ID: 1458688
Report Number(s):
LA-UR-18-20061; LLNL-JRNL-738424
Journal ID: ISSN 0003-6951; TRN: US1801008
Grant/Contract Number:  
AC52-06NA25396; AC02-05CH11231; AC52-07NA27344; NA0002908; NA0002928
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 111; Journal Issue: 22; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Material Science

Citation Formats

Steele, L. G., Lawson, M., Onyszczak, M., Bush, B. T., Mei, Z., Dioguardi, Adam P., King, J., Parker, A., Pines, A., Weir, S. T., Evans, W., Visbeck, K., Vohra, Y. K., and Curro, N. J. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils. United States: N. p., 2017. Web. doi:10.1063/1.5004153.
Steele, L. G., Lawson, M., Onyszczak, M., Bush, B. T., Mei, Z., Dioguardi, Adam P., King, J., Parker, A., Pines, A., Weir, S. T., Evans, W., Visbeck, K., Vohra, Y. K., & Curro, N. J. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils. United States. doi:10.1063/1.5004153.
Steele, L. G., Lawson, M., Onyszczak, M., Bush, B. T., Mei, Z., Dioguardi, Adam P., King, J., Parker, A., Pines, A., Weir, S. T., Evans, W., Visbeck, K., Vohra, Y. K., and Curro, N. J. Tue . "Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils". United States. doi:10.1063/1.5004153. https://www.osti.gov/servlets/purl/1417179.
@article{osti_1417179,
title = {Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils},
author = {Steele, L. G. and Lawson, M. and Onyszczak, M. and Bush, B. T. and Mei, Z. and Dioguardi, Adam P. and King, J. and Parker, A. and Pines, A. and Weir, S. T. and Evans, W. and Visbeck, K. and Vohra, Y. K. and Curro, N. J.},
abstractNote = {Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers a route to both DC and AC magnetometry in diamond anvil cells under high pressures (>3 GPa). However, a serious challenge to realizing experiments has been the insertion of microwave radiation into the sample space without screening by the gasket material. We utilize designer anvils with lithographically deposited metallic microchannels on the diamond culet as a microwave antenna. We detected the spin resonance of an ensemble of microdiamonds under pressure and measured the pressure dependence of the zero field splitting parameters. Furthermore, these experiments enable the possibility for all-optical magnetic resonance experiments on nanoliter sample volumes at high pressures.},
doi = {10.1063/1.5004153},
journal = {Applied Physics Letters},
number = 22,
volume = 111,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Understanding the Magnetic Resonance Spectrum of Nitrogen Vacancy Centers in an Ensemble of Randomly Oriented Nanodiamonds
journal, September 2017

  • Jeong, Keunhong; Parker, Anna J.; Page, Ralph H.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 38
  • DOI: 10.1021/acs.jpcc.7b07247

Electronic Properties and Metrology Applications of the Diamond NV Center under Pressure
journal, January 2014


Nuclear magnetic resonance in a diamond anvil cell at very high pressures
journal, February 1998

  • Pravica, Michael G.; Silvera, Isaac F.
  • Review of Scientific Instruments, Vol. 69, Issue 2
  • DOI: 10.1063/1.1148686

Ultralong spin coherence time in isotopically engineered diamond
journal, April 2009

  • Balasubramanian, Gopalakrishnan; Neumann, Philipp; Twitchen, Daniel
  • Nature Materials, Vol. 8, Issue 5
  • DOI: 10.1038/nmat2420

Spontaneous Formation of a Superconducting and Antiferromagnetic Hybrid State in SrFe 2 As 2 under High Pressure
journal, December 2009


Pressure-Induced Superconductivity in Quasi-2D CeRhIn 5
journal, May 2000


Superconductivity up to 29 K in SrFe 2 As 2 and BaFe 2 As 2 at high pressures
journal, December 2008


10 GPa-Class High-Pressure NMR Technique Realized by the New Cell with Improved Space Efficiency [容積効率にこだわった高圧セルによる10 GPa級NMR測定]
journal, January 2012

  • Kitagawa, Kentaro; Matsubayashi, Kazuyuki; Gotou, Hirotada
  • The Review of High Pressure Science and Technology, Vol. 22, Issue 3
  • DOI: 10.4131/jshpreview.22.198

Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond
journal, January 2015


NMR in a diamond anvil cell
journal, March 1987

  • Lee, Sam‐Hyeon; Luszczynski, K.; Norberg, R. E.
  • Review of Scientific Instruments, Vol. 58, Issue 3
  • DOI: 10.1063/1.1139246

Solidification of High-Pressure Medium Daphne 7373
journal, June 2007

  • Yokogawa, Keiichi; Murata, Keizo; Yoshino, Harukazu
  • Japanese Journal of Applied Physics, Vol. 46, Issue 6A
  • DOI: 10.1143/JJAP.46.3636

High sensitivity magnetic imaging using an array of spins in diamond
journal, April 2010

  • Steinert, S.; Dolde, F.; Neumann, P.
  • Review of Scientific Instruments, Vol. 81, Issue 4
  • DOI: 10.1063/1.3385689

Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: A first-principles study
journal, December 2014


Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
journal, August 2015

  • Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.
  • Nature, Vol. 525, Issue 7567
  • DOI: 10.1038/nature14964

Observation of the Wigner-Huntington transition to metallic hydrogen
journal, January 2017


Room-temperature operation of a radiofrequency diamond magnetometer near the shot-noise limit
journal, December 2012

  • Shin, Chang S.; Avalos, Claudia E.; Butler, Mark C.
  • Journal of Applied Physics, Vol. 112, Issue 12
  • DOI: 10.1063/1.4771924

Magnetic susceptibility measurements at high pressure using designer diamond anvils
journal, April 2003

  • Jackson, D. D.; Aracne-Ruddle, C.; Malba, V.
  • Review of Scientific Instruments, Vol. 74, Issue 4
  • DOI: 10.1063/1.1544084

Properties of nitrogen-vacancy centers in diamond: the group theoretic approach
journal, February 2011


Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor
journal, January 2013


Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer) 3 Sample Volume
journal, January 2013


Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions
journal, January 1986

  • Mao, H. K.; Xu, J.; Bell, P. M.
  • Journal of Geophysical Research, Vol. 91, Issue B5, p. 4673-4676
  • DOI: 10.1029/JB091iB05p04673

Molecular motion in solid H 2 at high pressures
journal, December 1989


An electrical microheater technique for high-pressure and high-temperature diamond anvil cell experiments
journal, January 2009

  • Weir, S. T.; Jackson, D. D.; Falabella, S.
  • Review of Scientific Instruments, Vol. 80, Issue 1
  • DOI: 10.1063/1.3069286

Solid-state electronic spin coherence time approaching one second
journal, April 2013

  • Bar-Gill, N.; Pham, L. M.; Jarmola, A.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2771

Evolution of hyperfine parameters across a quantum critical point in CeRhIn 5
journal, October 2015


Epitaxial diamond encapsulation of metal microprobes for high pressure experiments
journal, November 2000

  • Weir, Samuel T.; Akella, Jagannadham; Aracne-Ruddle, Chantel
  • Applied Physics Letters, Vol. 77, Issue 21
  • DOI: 10.1063/1.1326838

High-sensitivity NMR beyond 200,000 atmospheres of pressure
journal, August 2015


Electrical and Mechanical Properties of C 70 Fullerene and Graphite under High Pressures Studied Using Designer Diamond Anvils
journal, December 2000

  • Patterson, Jeremy R.; Catledge, Shane A.; Vohra, Yogesh K.
  • Physical Review Letters, Vol. 85, Issue 25
  • DOI: 10.1103/PhysRevLett.85.5364

Real Time Magnetic Field Sensing and Imaging Using a Single Spin in Diamond
journal, January 2011