skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An atomistic fingerprint algorithm for learning ab initio molecular force fields

Authors:
ORCiD logo [1];  [1];  [1]
  1. Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1417101
Grant/Contract Number:  
Collaboratory on Mathematics for Mesoscopic Modeling of Materials
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Name: Journal of Chemical Physics Journal Volume: 148 Journal Issue: 3; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Tang, Yu-Hang, Zhang, Dongkun, and Karniadakis, George Em. An atomistic fingerprint algorithm for learning ab initio molecular force fields. United States: N. p., 2018. Web. doi:10.1063/1.5008630.
Tang, Yu-Hang, Zhang, Dongkun, & Karniadakis, George Em. An atomistic fingerprint algorithm for learning ab initio molecular force fields. United States. doi:10.1063/1.5008630.
Tang, Yu-Hang, Zhang, Dongkun, and Karniadakis, George Em. Sun . "An atomistic fingerprint algorithm for learning ab initio molecular force fields". United States. doi:10.1063/1.5008630.
@article{osti_1417101,
title = {An atomistic fingerprint algorithm for learning ab initio molecular force fields},
author = {Tang, Yu-Hang and Zhang, Dongkun and Karniadakis, George Em},
abstractNote = {},
doi = {10.1063/1.5008630},
journal = {Journal of Chemical Physics},
number = 3,
volume = 148,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1063/1.5008630

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Transport and dielectric properties of water and the influence of coarse-graining: Comparing BMW, SPC/E, and TIP3P models
journal, February 2014

  • Braun, Daniel; Boresch, Stefan; Steinhauser, Othmar
  • The Journal of Chemical Physics, Vol. 140, Issue 6
  • DOI: 10.1063/1.4864117

Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
journal, January 1996

  • Jorgensen, William L.; Maxwell, David S.; Tirado-Rives, Julian
  • Journal of the American Chemical Society, Vol. 118, Issue 45
  • DOI: 10.1021/ja9621760

UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992

  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

Learning molecular energies using localized graph kernels
journal, March 2017

  • Ferré, Grégoire; Haut, Terry; Barros, Kipton
  • The Journal of Chemical Physics, Vol. 146, Issue 11
  • DOI: 10.1063/1.4978623

Amp: A modular approach to machine learning in atomistic simulations
journal, October 2016


Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics
journal, May 2013

  • Zhao, Gongpu; Perilla, Juan R.; Yufenyuy, Ernest L.
  • Nature, Vol. 497, Issue 7451
  • DOI: 10.1038/nature12162

Tables of Abscissas and Weights for Numerical Evaluation of Integrals of the Form � ∞ 0 e -x x n f(x) dx
journal, October 1959

  • Rabinowitz, Philip; Weiss, George
  • Mathematical Tables and Other Aids to Computation, Vol. 13, Issue 68
  • DOI: 10.2307/2002801

Constructing smoothing functions in smoothed particle hydrodynamics with applications
journal, June 2003


Exact Wavelets on the Ball
journal, December 2012


CHARMM TIP3P Water Model Suppresses Peptide Folding by Solvating the Unfolded State
journal, April 2016

  • Boonstra, Sander; Onck, Patrick R.; van der Giessen, Erik
  • The Journal of Physical Chemistry B, Vol. 120, Issue 15
  • DOI: 10.1021/acs.jpcb.6b01316

Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

A numerical approach to the testing of the fission hypothesis
journal, December 1977


A general regression neural network
journal, January 1991

  • Specht, D. F.
  • IEEE Transactions on Neural Networks, Vol. 2, Issue 6
  • DOI: 10.1109/72.97934

Two-Point Step Size Gradient Methods
journal, January 1988

  • Barzilai, Jonathan; Borwein, Jonathan M.
  • IMA Journal of Numerical Analysis, Vol. 8, Issue 1
  • DOI: 10.1093/imanum/8.1.141

Picosecond to Millisecond Structural Dynamics in Human Ubiquitin
journal, May 2016

  • Lindorff-Larsen, Kresten; Maragakis, Paul; Piana, Stefano
  • The Journal of Physical Chemistry B, Vol. 120, Issue 33
  • DOI: 10.1021/acs.jpcb.6b02024

A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules
journal, May 1995

  • Cornell, Wendy D.; Cieplak, Piotr; Bayly, Christopher I.
  • Journal of the American Chemical Society, Vol. 117, Issue 19
  • DOI: 10.1021/ja00124a002

Adaptive Accelerated ReaxFF Reactive Dynamics with Validation from Simulating Hydrogen Combustion
journal, June 2014

  • Cheng, Tao; Jaramillo-Botero, Andrés; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 136, Issue 26
  • DOI: 10.1021/ja5037258

Machine learning of accurate energy-conserving molecular force fields
journal, May 2017

  • Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.
  • Science Advances, Vol. 3, Issue 5
  • DOI: 10.1126/sciadv.1603015

Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps
journal, May 2005

  • Coifman, R. R.; Lafon, S.; Lee, A. B.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 21
  • DOI: 10.1073/pnas.0500334102

Atom-centered symmetry functions for constructing high-dimensional neural network potentials
journal, February 2011

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 134, Issue 7
  • DOI: 10.1063/1.3553717