skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Validating neural-network refinements of nuclear mass models

Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
OSTI Identifier:
Grant/Contract Number:  
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Review C
Additional Journal Information:
Journal Name: Physical Review C Journal Volume: 97 Journal Issue: 1; Journal ID: ISSN 2469-9985
American Physical Society
Country of Publication:
United States

Citation Formats

Utama, R., and Piekarewicz, J. Validating neural-network refinements of nuclear mass models. United States: N. p., 2018. Web. doi:10.1103/PhysRevC.97.014306.
Utama, R., & Piekarewicz, J. Validating neural-network refinements of nuclear mass models. United States. doi:10.1103/PhysRevC.97.014306.
Utama, R., and Piekarewicz, J. Tue . "Validating neural-network refinements of nuclear mass models". United States. doi:10.1103/PhysRevC.97.014306.
title = {Validating neural-network refinements of nuclear mass models},
author = {Utama, R. and Piekarewicz, J.},
abstractNote = {},
doi = {10.1103/PhysRevC.97.014306},
journal = {Physical Review C},
number = 1,
volume = 97,
place = {United States},
year = {2018},
month = {1}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1103/PhysRevC.97.014306

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nuclear mass predictions for the crustal composition of neutron stars: A Bayesian neural network approach
journal, January 2016

Hartree-Fock-Bogoliubov nuclear mass model with 0.50 MeV accuracy based on standard forms of Skyrme and pairing functionals
journal, December 2013

Further improvements on a global nuclear mass model
journal, July 2011

High-accuracy mass spectrometry with stored ions
journal, March 2006

Refining mass formulas for astrophysical applications: A Bayesian neural network approach
journal, October 2017

Microscopic mass formulas
journal, July 1995

Outer crust of nonaccreting cold neutron stars
journal, March 2006

  • Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen
  • Physical Review C, Vol. 73, Issue 3
  • DOI: 10.1103/PhysRevC.73.035804

Synthesis of the elements in stars: forty years of progress
journal, October 1997

The Ame2012 atomic mass evaluation
journal, December 2012

Bayesian neural networks and density networks
journal, January 1995

  • MacKay, David J. C.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 354, Issue 1
  • DOI: 10.1016/0168-9002(94)00931-7

Comparison of Approximate Methods for Handling Hyperparameters
journal, July 1999

Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XII. Stiffness and stability of neutron-star matter
journal, September 2010

Impact of individual nuclear masses on r -process abundances
journal, September 2015

The Ground State of Matter at High Densities: Equation of State and Stellar Models
journal, November 1971

  • Baym, Gordon; Pethick, Christopher; Sutherland, Peter
  • The Astrophysical Journal, Vol. 170
  • DOI: 10.1086/151216

The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures
journal, March 2017

New Finite-Range Droplet Mass Model and Equation-of-State Parameters
journal, January 2012

Impact of the symmetry energy on the outer crust of nonaccreting neutron stars
journal, August 2008

Nuclear charge radii: density functional theory meets Bayesian neural networks
journal, October 2016

  • Utama, R.; Chen, Wei-Chia; Piekarewicz, J.
  • Journal of Physics G: Nuclear and Particle Physics, Vol. 43, Issue 11
  • DOI: 10.1088/0954-3899/43/11/114002

Network calculations for r-process nucleosynthesis
journal, January 2010

The impact of individual nuclear properties on r -process nucleosynthesis
journal, January 2016

  • Mumpower, M. R.; Surman, R.; McLaughlin, G. C.
  • Progress in Particle and Nuclear Physics, Vol. 86
  • DOI: 10.1016/j.ppnp.2015.09.001

Nuclear Ground-State Masses and Deformations
journal, March 1995

  • Moller, P.; Nix, J. R.; Myers, W. D.
  • Atomic Data and Nuclear Data Tables, Vol. 59, Issue 2, p. 185-381
  • DOI: 10.1006/adnd.1995.1002