skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Designing solid-liquid interphases for sodium batteries

Abstract

Secondary batteries based on earth-abundant sodium metal anodes are desirable for both stationary and portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during recharge drives rough, dendritic electrodeposition. Chemical instability of liquid electrolytes also leads to premature cell failure as a result of parasitic reactions with the anode. Here we use joint density-functional theoretical analysis to show that the surface diffusion barrier for sodium ion transport is a sensitive function of the chemistry of solid–electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport, comparable to that of metallic magnesium. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately three-fold reduction in activation energy for ion transport at a sodium bromide interphase. Direct visualization of sodium electrodeposition confirms large improvements in stability of sodium deposition at sodium bromide-rich interphases.

Authors:
 [1];  [1];  [2];  [2];  [3];  [4];  [1];  [1];  [1];  [5];  [2];  [1]
  1. Cornell Univ., Ithaca, NY (United States). School of Chemical and Biomolecular Engineering
  2. Cornell Univ., Ithaca, NY (United States). Dept. of Physics
  3. Cornell Univ., Ithaca, NY (United States). School of Applied and Engineering Physics
  4. Cornell Univ., Ithaca, NY (United States). Dept. of Materials Science and Engineering
  5. Cornell Univ., Ithaca, NY (United States). School of Applied and Engineering Physics; Cornell Univ., Ithaca, NY (United States). Kavli Inst. at Cornell for Nanoscale Science
Publication Date:
Research Org.:
Cornell Univ., Ithaca, NY (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E); National Science Foundation (NSF)
OSTI Identifier:
1417017
Grant/Contract Number:  
AR0000750; DMR-1120296; DMR-1654596
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Batteries; Surface patterning

Citation Formats

Choudhury, Snehashis, Wei, Shuya, Ozhabes, Yalcin, Gunceler, Deniz, Zachman, Michael J., Tu, Zhengyuan, Shin, Jung Hwan, Nath, Pooja, Agrawal, Akanksha, Kourkoutis, Lena F., Arias, Tomas A., and Archer, Lynden A. Designing solid-liquid interphases for sodium batteries. United States: N. p., 2017. Web. doi:10.1038/s41467-017-00742-x.
Choudhury, Snehashis, Wei, Shuya, Ozhabes, Yalcin, Gunceler, Deniz, Zachman, Michael J., Tu, Zhengyuan, Shin, Jung Hwan, Nath, Pooja, Agrawal, Akanksha, Kourkoutis, Lena F., Arias, Tomas A., & Archer, Lynden A. Designing solid-liquid interphases for sodium batteries. United States. doi:10.1038/s41467-017-00742-x.
Choudhury, Snehashis, Wei, Shuya, Ozhabes, Yalcin, Gunceler, Deniz, Zachman, Michael J., Tu, Zhengyuan, Shin, Jung Hwan, Nath, Pooja, Agrawal, Akanksha, Kourkoutis, Lena F., Arias, Tomas A., and Archer, Lynden A. Thu . "Designing solid-liquid interphases for sodium batteries". United States. doi:10.1038/s41467-017-00742-x. https://www.osti.gov/servlets/purl/1417017.
@article{osti_1417017,
title = {Designing solid-liquid interphases for sodium batteries},
author = {Choudhury, Snehashis and Wei, Shuya and Ozhabes, Yalcin and Gunceler, Deniz and Zachman, Michael J. and Tu, Zhengyuan and Shin, Jung Hwan and Nath, Pooja and Agrawal, Akanksha and Kourkoutis, Lena F. and Arias, Tomas A. and Archer, Lynden A.},
abstractNote = {Secondary batteries based on earth-abundant sodium metal anodes are desirable for both stationary and portable electrical energy storage. Room-temperature sodium metal batteries are impractical today because morphological instability during recharge drives rough, dendritic electrodeposition. Chemical instability of liquid electrolytes also leads to premature cell failure as a result of parasitic reactions with the anode. Here we use joint density-functional theoretical analysis to show that the surface diffusion barrier for sodium ion transport is a sensitive function of the chemistry of solid–electrolyte interphase. In particular, we find that a sodium bromide interphase presents an exceptionally low energy barrier to ion transport, comparable to that of metallic magnesium. We evaluate this prediction by means of electrochemical measurements and direct visualization studies. These experiments reveal an approximately three-fold reduction in activation energy for ion transport at a sodium bromide interphase. Direct visualization of sodium electrodeposition confirms large improvements in stability of sodium deposition at sodium bromide-rich interphases.},
doi = {10.1038/s41467-017-00742-x},
journal = {Nature Communications},
number = 1,
volume = 8,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Metal–Sulfur Battery Cathodes Based on PAN–Sulfur Composites
journal, September 2015

  • Wei, Shuya; Ma, Lin; Hendrickson, Kenville E.
  • Journal of the American Chemical Society, Vol. 137, Issue 37
  • DOI: 10.1021/jacs.5b08113

Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries
journal, October 2015


Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries
journal, July 2012

  • Lu, Yingying; Das, Shyamal K.; Moganty, Surya S.
  • Advanced Materials, Vol. 24, Issue 32
  • DOI: 10.1002/adma.201201953

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility
journal, December 2014


Nonflammable perfluoropolyether-based electrolytes for lithium batteries
journal, February 2014

  • Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 9
  • DOI: 10.1073/pnas.1314615111

Segregation of NaBr in NaBr/NaCl crystals grown from aqueous solutions: Implications for sea salt surface chemistry
journal, March 2001

  • Zangmeister, Christopher D.; Turner, Jessica A.; Pemberton, Jeanne E.
  • Geophysical Research Letters, Vol. 28, Issue 6
  • DOI: 10.1029/2000GL012539

Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries
journal, December 2007


High temperature sodium batteries: status, challenges and future trends
journal, January 2013

  • Hueso, Karina B.; Armand, Michel; Rojo, Teófilo
  • Energy & Environmental Science, Vol. 6, Issue 3
  • DOI: 10.1039/c3ee24086j

Lithium Metal Stability in Batteries with Block Copolymer Electrolytes
journal, January 2013

  • Hallinan, Daniel T.; Mullin, Scott A.; Stone, Gregory M.
  • Journal of The Electrochemical Society, Vol. 160, Issue 3
  • DOI: 10.1149/2.030303jes

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes
journal, December 2011

  • Etacheri, Vinodkumar; Haik, Ortal; Goffer, Yossi
  • Langmuir, Vol. 28, Issue 1
  • DOI: 10.1021/la203712s

Role of propane sultone as an additive to improve the performance of a lithium-rich cathode material at a high potential
journal, January 2015

  • Pires, Julie; Timperman, Laure; Castets, Aurore
  • RSC Advances, Vol. 5, Issue 52
  • DOI: 10.1039/C5RA05650K

Electrochemical aspects of the generation of ramified metallic electrodeposits
journal, December 1990


A Highly Reversible Room-Temperature Sodium Metal Anode
journal, November 2015


High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites
journal, March 2013

  • Schaefer, Jennifer L.; Yanga, Dennis A.; Archer, Lynden A.
  • Chemistry of Materials, Vol. 25, Issue 6
  • DOI: 10.1021/cm303091j

The importance of nonlinear fluid response in joint density-functional theory studies of battery systems
journal, October 2013

  • Gunceler, Deniz; Letchworth-Weaver, Kendra; Sundararaman, Ravishankar
  • Modelling and Simulation in Materials Science and Engineering, Vol. 21, Issue 7
  • DOI: 10.1088/0965-0393/21/7/074005

Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth
journal, November 2014

  • Jäckle, Markus; Groß, Axel
  • The Journal of Chemical Physics, Vol. 141, Issue 17
  • DOI: 10.1063/1.4901055

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

Anode-Free Sodium Battery through in Situ Plating of Sodium Metal
journal, January 2017


Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Room temperature Na/S batteries with sulfur composite cathode materials
journal, January 2007


Designer interphases for the lithium-oxygen electrochemical cell
journal, April 2017

  • Choudhury, Snehashis; Wan, Charles Tai-Chieh; Al Sadat, Wajdi I.
  • Science Advances, Vol. 3, Issue 4
  • DOI: 10.1126/sciadv.1602809

Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


Magnesium(II) Bis(trifluoromethane sulfonyl) Imide-Based Electrolytes with Wide Electrochemical Windows for Rechargeable Magnesium Batteries
journal, March 2014

  • Ha, Se-Young; Lee, Yong-Won; Woo, Sang Won
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 6, p. 4063-4073
  • DOI: 10.1021/am405619v

Vinylene carbonate–LiNO3: A hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode
journal, February 2015


On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries
journal, February 2002


Prop-1-ene-1,3-sultone as SEI formation additive in propylene carbonate-based electrolyte for lithium ion batteries
journal, April 2012


A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte
journal, January 2015

  • Agrawal, Akanksha; Choudhury, Snehashis; Archer, Lynden A.
  • RSC Advances, Vol. 5, Issue 27
  • DOI: 10.1039/C5RA01031D

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Pseudopotentials for high-throughput DFT calculations
journal, January 2014


Sodium-Oxygen Batteries: A Comparative Review from Chemical and Electrochemical Fundamentals to Future Perspective
journal, June 2016

  • Yadegari, Hossein; Sun, Qian; Sun, Xueliang
  • Advanced Materials, Vol. 28, Issue 33
  • DOI: 10.1002/adma.201504373

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

    Works referencing / citing this record:

    The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries
    journal, January 2019

    • Steudel, Ralf; Chivers, Tristram
    • Chemical Society Reviews, Vol. 48, Issue 12
    • DOI: 10.1039/c8cs00826d

    The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries
    journal, January 2019

    • Steudel, Ralf; Chivers, Tristram
    • Chemical Society Reviews, Vol. 48, Issue 12
    • DOI: 10.1039/c8cs00826d