skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures

Abstract

The Paris Agreement of December 2015 stated a goal to pursue efforts to keep global temperatures below 1.5 °C above preindustrial levels and well below 2 °C. The IPCC was charged with assessing climate impacts at these temperature levels, but fully coupled equilibrium climate simulations do not currently exist to inform such assessments. Here, we produce a set of scenarios using a simple model designed to achieve long-term 1.5 and 2 °C temperatures in a stable climate. These scenarios are then used to produce century-scale ensemble simulations using the Community Earth System Model, providing impact-relevant long-term climate data for stabilization pathways at 1.5 and 2 °C levels and an overshoot 1.5 °C case, which are realized (for the 21st century) in the coupled model and are freely available to the community. We also describe the design of the simulations and a brief overview of their impact-relevant climate response. Exceedance of historical record temperature occurs with 60 % greater frequency in the 2 °C climate than in a 1.5 °C climate aggregated globally, and with twice the frequency in equatorial and arid regions. Extreme precipitation intensity is statistically significantly higher in a 2.0 °C climate than a 1.5 °C climate in some specific regions (but not all). The modelmore » exhibits large differences in the Arctic, which is ice-free with a frequency of 1 in 3 years in the 2.0 °C scenario, and 1 in 40 years in the 1.5 °C scenario. Significance of impact differences with respect to multi-model variability is not assessed.« less

Authors:
 [1]; ORCiD logo [2];  [1];  [3]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [1];  [1];  [1];  [5]; ORCiD logo [6]; ORCiD logo [1]
  1. National Center for Atmospheric Research, Boulder, CO (United States)
  2. Texas A & M Univ., College Station, TX (United States). Dept. of Atmospheric Sciences
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  4. Univ. of Colorado, Boulder, CO (United States). Dept. of Atmospheric and Oceanic Sciences, Inst. of Arctic and Alpine Research
  5. Sun Yat-Sen Univ., Guangzhou, (China). School of Atmospheric Sciences
  6. National Center for Atmospheric Research, Boulder, CO (United States); ETH, Zurich (Switzerland). Inst. for Atmospheric and Climate Science
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1416921
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Earth System Dynamics (Online)
Additional Journal Information:
Journal Name: Earth System Dynamics (Online); Journal Volume: 8; Journal Issue: 3; Journal ID: ISSN 2190-4987
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Sanderson, Benjamin M., Xu, Yangyang, Tebaldi, Claudia, Wehner, Michael, O'Neill, Brian, Jahn, Alexandra, Pendergrass, Angeline G., Lehner, Flavio, Strand, Warren G., Lin, Lei, Knutti, Reto, and Lamarque, Jean Francois. Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures. United States: N. p., 2017. Web. doi:10.5194/esd-8-827-2017.
Sanderson, Benjamin M., Xu, Yangyang, Tebaldi, Claudia, Wehner, Michael, O'Neill, Brian, Jahn, Alexandra, Pendergrass, Angeline G., Lehner, Flavio, Strand, Warren G., Lin, Lei, Knutti, Reto, & Lamarque, Jean Francois. Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures. United States. doi:10.5194/esd-8-827-2017.
Sanderson, Benjamin M., Xu, Yangyang, Tebaldi, Claudia, Wehner, Michael, O'Neill, Brian, Jahn, Alexandra, Pendergrass, Angeline G., Lehner, Flavio, Strand, Warren G., Lin, Lei, Knutti, Reto, and Lamarque, Jean Francois. Tue . "Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures". United States. doi:10.5194/esd-8-827-2017. https://www.osti.gov/servlets/purl/1416921.
@article{osti_1416921,
title = {Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures},
author = {Sanderson, Benjamin M. and Xu, Yangyang and Tebaldi, Claudia and Wehner, Michael and O'Neill, Brian and Jahn, Alexandra and Pendergrass, Angeline G. and Lehner, Flavio and Strand, Warren G. and Lin, Lei and Knutti, Reto and Lamarque, Jean Francois},
abstractNote = {The Paris Agreement of December 2015 stated a goal to pursue efforts to keep global temperatures below 1.5 °C above preindustrial levels and well below 2 °C. The IPCC was charged with assessing climate impacts at these temperature levels, but fully coupled equilibrium climate simulations do not currently exist to inform such assessments. Here, we produce a set of scenarios using a simple model designed to achieve long-term 1.5 and 2 °C temperatures in a stable climate. These scenarios are then used to produce century-scale ensemble simulations using the Community Earth System Model, providing impact-relevant long-term climate data for stabilization pathways at 1.5 and 2 °C levels and an overshoot 1.5 °C case, which are realized (for the 21st century) in the coupled model and are freely available to the community. We also describe the design of the simulations and a brief overview of their impact-relevant climate response. Exceedance of historical record temperature occurs with 60 % greater frequency in the 2 °C climate than in a 1.5 °C climate aggregated globally, and with twice the frequency in equatorial and arid regions. Extreme precipitation intensity is statistically significantly higher in a 2.0 °C climate than a 1.5 °C climate in some specific regions (but not all). The model exhibits large differences in the Arctic, which is ice-free with a frequency of 1 in 3 years in the 2.0 °C scenario, and 1 in 40 years in the 1.5 °C scenario. Significance of impact differences with respect to multi-model variability is not assessed.},
doi = {10.5194/esd-8-827-2017},
journal = {Earth System Dynamics (Online)},
number = 3,
volume = 8,
place = {United States},
year = {2017},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The Evolution of Climate Sensitivity and Climate Feedbacks in the Community Atmosphere Model
journal, March 2012


Temperature-driven global sea-level variability in the Common Era
journal, February 2016

  • Kopp, Robert E.; Kemp, Andrew C.; Bittermann, Klaus
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1517056113

Quantifying the climate impacts of albedo changes due to biofuel production: a comparison with biogeochemical effects
journal, January 2014


Climate Change Projections in CESM1(CAM5) Compared to CCSM4
journal, September 2013

  • Meehl, Gerald A.; Washington, Warren M.; Arblaster, Julie M.
  • Journal of Climate, Vol. 26, Issue 17
  • DOI: 10.1175/JCLI-D-12-00572.1

Probabilistic cost estimates for climate change mitigation
journal, January 2013

  • Rogelj, Joeri; McCollum, David L.; Reisinger, Andy
  • Nature, Vol. 493, Issue 7430
  • DOI: 10.1038/nature11787

The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions
journal, January 2013


Changes in Susceptibility to Heat During the Summer: A Multicountry Analysis
journal, May 2016

  • Gasparrini, Antonio; Guo, Yuming; Hashizume, Masahiro
  • American Journal of Epidemiology, Vol. 183, Issue 11
  • DOI: 10.1093/aje/kwv260

Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry: ATMOSPHERIC CHEMISTRY AND GREENHOUSE GASES
journal, May 2012

  • Prather, Michael J.; Holmes, Christopher D.; Hsu, Juno
  • Geophysical Research Letters, Vol. 39, Issue 9
  • DOI: 10.1029/2012GL051440

Pattern scaling: Its strengths and limitations, and an update on the latest model simulations
journal, January 2014


How positive is the feedback between climate change and the carbon cycle?
journal, April 2003


Global Carbon Budget 2016
journal, January 2016

  • Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.
  • Earth System Science Data, Vol. 8, Issue 2
  • DOI: 10.5194/essd-8-605-2016

What would it take to achieve the Paris temperature targets?: ACHIEVING THE PARIS TEMPERATURE TARGETS
journal, July 2016

  • Sanderson, Benjamin M.; O'Neill, Brian C.; Tebaldi, Claudia
  • Geophysical Research Letters, Vol. 43, Issue 13
  • DOI: 10.1002/2016GL069563

Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 – Part 1: Model description and calibration
journal, January 2011

  • Meinshausen, M.; Raper, S. C. B.; Wigley, T. M. L.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 4
  • DOI: 10.5194/acp-11-1417-2011

Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design
journal, January 2017

  • Mitchell, Daniel; AchutaRao, Krishna; Allen, Myles
  • Geoscientific Model Development, Vol. 10, Issue 2
  • DOI: 10.5194/gmd-10-571-2017

Energy system transformations for limiting end-of-century warming to below 1.5 °C
journal, May 2015

  • Rogelj, Joeri; Luderer, Gunnar; Pietzcker, Robert C.
  • Nature Climate Change, Vol. 5, Issue 6
  • DOI: 10.1038/nclimate2572

Origins of differences in climate sensitivity, forcing and feedback in climate models
journal, April 2012


The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability
journal, August 2015

  • Kay, J. E.; Deser, C.; Phillips, A.
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 8
  • DOI: 10.1175/BAMS-D-13-00255.1

Paris Agreement climate proposals need a boost to keep warming well below 2 °C
journal, June 2016

  • Rogelj, Joeri; den Elzen, Michel; Höhne, Niklas
  • Nature, Vol. 534, Issue 7609
  • DOI: 10.1038/nature18307

The Association Between Extreme Precipitation and Waterborne Disease Outbreaks in the United States, 1948–1994
journal, August 2001

  • Curriero, Frank C.; Patz, Jonathan A.; Rose, Joan B.
  • American Journal of Public Health, Vol. 91, Issue 8
  • DOI: 10.2105/AJPH.91.8.1194

Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly
journal, November 2009


Does extreme precipitation intensity depend on the emissions scenario?: SCENARIO DEPENDENCE OF EXTREME RAIN
journal, October 2015

  • Pendergrass, Angeline G.; Lehner, Flavio; Sanderson, Benjamin M.
  • Geophysical Research Letters, Vol. 42, Issue 20
  • DOI: 10.1002/2015GL065854

Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols
journal, February 2016


Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes
journal, April 2015


Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5
journal, January 2016


The Community Earth System Model: A Framework for Collaborative Research
journal, February 2013

  • Hurrell, James W.; Holland, M. M.; Gent, P. R.
  • Bulletin of the American Meteorological Society
  • DOI: 10.1175/BAMS-D-12-00121

Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems
journal, October 2008

  • Knapp, Alan K.; Beier, Claus; Briske, David D.
  • BioScience, Vol. 58, Issue 9
  • DOI: 10.1641/B580908

A Representative Democracy to Reduce Interdependency in a Multimodel Ensemble
journal, July 2015


Characterizing half-a-degree difference: a review of methods for identifying regional climate responses to global warming targets: Characterizing half-a-degree difference
journal, January 2017

  • James, Rachel; Washington, Richard; Schleussner, Carl-Friedrich
  • Wiley Interdisciplinary Reviews: Climate Change, Vol. 8, Issue 2
  • DOI: 10.1002/wcc.457

Realizing the impacts of a 1.5 °C warmer world
journal, June 2016

  • Mitchell, Daniel; James, Rachel; Forster, Piers M.
  • Nature Climate Change, Vol. 6, Issue 8
  • DOI: 10.1038/nclimate3055

Early onset of significant local warming in low latitude countries
journal, July 2011


Global Variation in the Effects of Ambient Temperature on Mortality: A Systematic Evaluation
journal, January 2014


High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5 °C over land
journal, July 2016

  • Huntingford, Chris; Mercado, Lina M.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep30294

Responses of terrestrial aridity to global warming
journal, July 2014

  • Fu, Qiang; Feng, Song
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 13
  • DOI: 10.1002/2014JD021608

Changes in the Distribution of Rain Frequency and Intensity in Response to Global Warming
journal, November 2014


The representative concentration pathways: an overview
journal, August 2011


Ice-free Arctic at 1.5 °C?
journal, March 2017

  • Screen, James A.; Williamson, Daniel
  • Nature Climate Change, Vol. 7, Issue 4
  • DOI: 10.1038/nclimate3248

September Arctic sea ice predicted to disappear near 2°C global warming above present: ARCTIC SEA ICE TO DISAPPEAR NEAR 2°C
journal, March 2012

  • Mahlstein, Irina; Knutti, Reto
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D6
  • DOI: 10.1029/2011JD016709

Long-term sea-level rise implied by 1.5 °C and 2 °C warming levels
journal, June 2012

  • Schaeffer, Michiel; Hare, William; Rahmstorf, Stefan
  • Nature Climate Change, Vol. 2, Issue 12
  • DOI: 10.1038/nclimate1584

Can Paris pledges avert severe climate change?
journal, November 2015


Biophysical and economic limits to negative CO2 emissions
journal, December 2015

  • Smith, Pete; Davis, Steven J.; Creutzig, Felix
  • Nature Climate Change, Vol. 6, Issue 1
  • DOI: 10.1038/nclimate2870

Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C
journal, January 2016

  • Schleussner, Carl-Friedrich; Lissner, Tabea K.; Fischer, Erich M.
  • Earth System Dynamics, Vol. 7, Issue 2
  • DOI: 10.5194/esd-7-327-2016

Uncertainty in climate change projections: the role of internal variability
journal, December 2010


Berkeley Earth Temperature Averaging Process
journal, January 2013

  • Rohde, Robert; Muller, Richard; Jacobsen, Robert
  • Geoinformatics & Geostatistics: An Overview, Vol. 01, Issue 02
  • DOI: 10.4172/2327-4581.1000103

The Closing Door of Climate Targets
journal, November 2012


Setting cumulative emissions targets to reduce the risk of dangerous climate change
journal, August 2009

  • Zickfeld, K.; Eby, M.; Matthews, H. D.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 38
  • DOI: 10.1073/pnas.0805800106

Dam safety effects due to human alteration of extreme precipitation: DAM SAFETY AND EXTREME PRECIPITATION
journal, March 2010

  • Hossain, Faisal; Jeyachandran, Indumathi; Pielke, Roger
  • Water Resources Research, Vol. 46, Issue 3
  • DOI: 10.1029/2009WR007704

Sea Ice Trends in Climate Models Only Accurate in Runs with Biased Global Warming
journal, August 2017


    Works referencing / citing this record:

    Midlatitude atmospheric circulation responses under 1.5 and 2.0 °C warming and implications for regional impacts
    journal, January 2018

    • Li, Camille; Michel, Clio; Seland Graff, Lise
    • Earth System Dynamics, Vol. 9, Issue 2
    • DOI: 10.5194/esd-9-359-2018

    Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble
    journal, January 2018

    • Wehner, Michael; Stone, Dáithí; Mitchell, Dann
    • Earth System Dynamics, Vol. 9, Issue 1
    • DOI: 10.5194/esd-9-299-2018

    Higher CO2 concentrations increase extreme event risk in a 1.5 °C world
    journal, June 2018


    Path Independence of Carbon Budgets When Meeting a Stringent Global Mean Temperature Target After an Overshoot
    journal, December 2019

    • Tokarska, Katarzyna B.; Zickfeld, Kirsten; Rogelj, Joeri
    • Earth's Future, Vol. 7, Issue 12
    • DOI: 10.1029/2019ef001312

    Path Independence of Carbon Budgets When Meeting a Stringent Global Mean Temperature Target After an Overshoot
    journal, December 2019

    • Tokarska, Katarzyna B.; Zickfeld, Kirsten; Rogelj, Joeri
    • Earth's Future, Vol. 7, Issue 12
    • DOI: 10.1029/2019ef001312

    Higher CO2 concentrations increase extreme event risk in a 1.5 °C world
    journal, June 2018


    Changes in extremely hot days under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the HAPPI multi-model ensemble
    journal, January 2018

    • Wehner, Michael; Stone, Dáithí; Mitchell, Dann
    • Earth System Dynamics, Vol. 9, Issue 1
    • DOI: 10.5194/esd-9-299-2018

    Midlatitude atmospheric circulation responses under 1.5 and 2.0 °C warming and implications for regional impacts
    journal, January 2018

    • Li, Camille; Michel, Clio; Seland Graff, Lise
    • Earth System Dynamics, Vol. 9, Issue 2
    • DOI: 10.5194/esd-9-359-2018